

# **MSc in Biology**

Faculty of Science, University of Neuchâtel

#### An integral and transversal curriculum

The Master of Science in Biology offers a programme that lets students select their area of specialization and acquire a diverse range of transferable skills. This MSc proposes an integrative approach: it begins with a common core of courses covering key topics in biology, with particular emphasis on methodological and quantitative aspects. Students then choose two of the five available specialisations: chemical ecology, biodiversity, animal behaviour, conservation biology, and microbial interactions in sustainable agriculture.

#### **Prof. in charge of the curriculum** Prof. Sergio Rasmann Sergio.Rasmann@unine.ch

#### Enquiries

Secretary of the Faculty of Science Secretariat.sciences@unine.ch +41 32 718 21 00

#### Version

Study plan dated 06 May 2024 Valid for the academic year 2024-2025

#### General structure of the programme :

The Master in Biology is a programme given over the span of 2 years and requires 120 ECTS credits to complete. The first semester is dedicated to the core curriculum, whereas the second semester is dedicated to the acquisition of specialisations. Of the five specialisations available in 3 groups, each student must choose two from two different groups. The second year is entirely dedicated to field work and the completion of a Master thesis.

| Core curriculum              |                                     | Specialisations and Master thesis                 |                                         |  |
|------------------------------|-------------------------------------|---------------------------------------------------|-----------------------------------------|--|
| Compulsory courses           | Compulsory courses Elective courses |                                                   | Group II                                |  |
| Generic skills               | Basics of conservation biology      | Microbial interactions in sustainable agriculture | Biodiversity                            |  |
| Computer tools               | Special skills                      | Animal behaviour                                  |                                         |  |
| Seminars                     | Excursions                          | Group III                                         |                                         |  |
| Laboratory and field methods | Internship                          | Conservation biology                              | Master thesis<br>(2 <sup>nd</sup> year) |  |
|                              | Free electives                      | Chemical ecology                                  |                                         |  |
| 21 ECTS                      | 15 ECTS                             | 24 ECTS specialization + 60 ECTS Master thesis    |                                         |  |



# Core curriculum (compulsory courses)

| Modules/courses       | Duration | Semester | ECTS | Principal Lecturer   | Evaluation  |
|-----------------------|----------|----------|------|----------------------|-------------|
| Generic skills module |          |          | 9    |                      |             |
| Statistics            | 30       | А        | 3    | Dr R. Slobodeanu     | CA (graded) |
| Scientific writing    | 30       | А        | 3    | Prof. K. Zuberbühler | CA (graded) |
| Seminars by externals | 28       | A and S  | 3    | Prof. J. Grant       | CA (pass)   |

| Computer tools (choose one)     |    |   | 3 |                 |             |
|---------------------------------|----|---|---|-----------------|-------------|
| Bioinformatic tools             | 30 | А | 3 | Prof. D. Croll  | CA (graded) |
| Models and parameter estimation | 30 | А | 3 | Prof. J. Koella | CA (graded) |

| Seminars module (choose two) |    |   | 6 |                      |             |
|------------------------------|----|---|---|----------------------|-------------|
| Ecology and sustainability   | 30 | А | 3 | Prof. J. Vermeer     | CA (graded) |
| Ecology and evolution        | 30 | А | 3 | Prof. K. Zuberbühler | CA (graded) |
| Ecology and biodiversity     | 30 | A | 3 | Prof. D. Croll       | CA (graded) |

| Laboratory methods (choose one) |      |   | 3 | 3                                    |             |  |
|---------------------------------|------|---|---|--------------------------------------|-------------|--|
| Molecular methods               | 7 hd | А | 3 | Dr S. Venkatasalam                   | CA (graded) |  |
| Natural substances analyses     | 7 hd | А | 3 | Profs. S. Von Reuss<br>and G. Roeder | CA (graded) |  |

Total ECTS Core compulsory courses

21



# Core curriculum (elective courses)

| Modules/courses                                                  | Duration | Semester | ECTS | Principal Lecturer         | Evaluation      |
|------------------------------------------------------------------|----------|----------|------|----------------------------|-----------------|
| Basics of Conservation biology                                   |          |          | 3-12 |                            |                 |
| Methods in biodiversity monitoring                               | 28       | А        | 3    | Prof. C. Praz              | Written, 1 hour |
| Animal conservation                                              | 30       | А        | 3    | Prof. C. Praz (info fauna) | CA (graded)     |
| Biodiversity and agriculture:<br>a transdisciplinary perspective | 28       | S        | 3    | Prof. A. Aebi              | CA (graded)     |
| Genomics of biodiversity                                         | 28       | S        | 3    | Prof. K. Lucek             | CA (graded)     |

| Special skills                                             |      |   | 3-12      |                         |             |
|------------------------------------------------------------|------|---|-----------|-------------------------|-------------|
| Introduction to geomatics for<br>biodiversity conservation | 28   | А | 3         | Dr S. Boillat           | CA (graded) |
| Microscopy                                                 | 7 hd | А | 3         | Dr S. Zabihzadeh (CSEM) | CA (graded) |
| Advanced geomatics for biodiversity conservation           | 28   | S | 3         | Dr S. Boillat           | CA (graded) |
| Non-validated compulsory course of the core curriculum     |      |   | max.<br>3 |                         | CA (graded) |

| Excursion (choose one max.)  |     |   | max.<br>3 |                                    |           |
|------------------------------|-----|---|-----------|------------------------------------|-----------|
| EXC Tropical forest ethology | 7 d | S | 3         | Prof. K. Zuberbühler               | CA (pass) |
| EXC Marine biology           | 7 d | S | 3         | Prof. R. Bshary                    | CA (pass) |
| EXC Mediterranean ecology    | 7 d | S | 3         | Prof. E. Mitchell                  | CA (pass) |
| EXC Alpine ecology           | 7 d | S | 3         | Prof. S. Rasmann<br>Prof. J. Grant | CA (pass) |

| Internship (see remarks)      |     |        | 6 |                  |           |
|-------------------------------|-----|--------|---|------------------|-----------|
| Approved by course controller | 160 | A or S | 6 | Prof. S. Rasmann | CA (pass) |

| Free electives (see remarks)  |        | max.<br>12 |
|-------------------------------|--------|------------|
| Approved by course controller | A or S | max.<br>12 |
| Approved by course controller | A or S | 12         |

15

Total ECTS Core elective courses



# Specialisations (see remarks)

| Modules/courses                                          | Duration | Semester | ECTS | Principal Lecturer    | Evaluation  |
|----------------------------------------------------------|----------|----------|------|-----------------------|-------------|
| Group I                                                  |          |          |      |                       |             |
| Microbial interactions in sustaine<br>agriculture module | able     |          | 12   |                       |             |
| Microbiome applications                                  | 28       | S        | 3    | Prof. D. Croll        | CA (graded) |
| Environmental mycology                                   | 28       | S        | 3    | Prof. S. Bindschedler | CA (graded) |
| Microbial ecology                                        | 28       | S        | 3    | Prof. P. Junier       | CA (graded) |
| Plant pathology                                          | 28       | S        | 3    | Dr T. Badet           | CA (graded) |

| Animal behaviour module                          |    |   | 12 |                      |             |
|--------------------------------------------------|----|---|----|----------------------|-------------|
| An integrative approach to ani-<br>mal behaviour | 28 | S | 3  | Prof. R. Bshary      | CA (graded) |
| Animal behaviour research                        | 28 | S | 3  | Prof. K. Zuberbühler | CA (graded) |
| Behavioural ecology                              | 28 | S | 3  | Dr D. Roche          | CA (graded) |
| Comparative cognition                            | 28 | S | 3  | Prof. K. Zuberbühler | CA (graded) |

#### Group II

| Biodiversity module                  |    |   | 12 |                                |             |
|--------------------------------------|----|---|----|--------------------------------|-------------|
| Soil biodiversity                    | 28 | S | 3  | Prof. E. Mitchell              | CA (graded) |
| Plant systematics and evolution      | 28 | S | 3  | Prof. J. Grant                 | CA (graded) |
| Natural ecosystems<br>of Switzerland | 28 | S | 3  | Dr S. Ursenbacher (info fauna) | CA (graded) |
| Biodiversity data analysis           | 28 | S | 3  | Dr E. Defossez                 | CA (graded) |



# Specializations and Master thesis (see remarks)

| Modules/courses                                     | Duration | Semester | ECTS | Principal Lecturer                  | Evaluation      |
|-----------------------------------------------------|----------|----------|------|-------------------------------------|-----------------|
| Group III                                           |          |          |      |                                     |                 |
| Conservation biology module                         |          |          | 12   |                                     |                 |
| Evidence-based conservation of species and habitats | 28       | S        | 3    | Prof. C. Praz                       | CA (graded)     |
| Evidence-based conservation of ecosystems           | 28       | S        | 3    | Prof. C. Zemp                       | CA (graded)     |
| Plant and ecosystem conservation                    | 28       | S        | 3    | Prof. S. Rasmann                    | CA (graded)     |
| Animal population monitoring practicals             | 3 d      | S        | 3    | Dr B. Schmidt (info fauna)          | CA (graded)     |
| Chemical ecology module                             |          |          | 12   |                                     |                 |
| Chemical ecology                                    | 28       | S        | 3    | Dr E. Defossez                      | Written, 1 hour |
| Biosynthesis and function of secondary compounds    | 28       | S        | 3    | Profs. J. Vermeer<br>and F. Kessler | CA (graded)     |
| Plant molecular genetics (+labs)                    | 28       | S        | 3    | Prof. J. Vermeer                    | CA (graded)     |
| Natural products chemistry<br>(+labs)               | 28       | S        | 3    | Prof. S. Von Reuss                  | CA (graded)     |
| Total ECTS Specializations                          |          |          | 24   | -                                   |                 |
| Master thesis                                       |          |          | 60   |                                     |                 |
| Master thesis                                       |          | A and S  | 60   |                                     | CA (graded)     |
| Total ECTS MSc in Biology                           |          |          | 120  | -                                   |                 |

**Study plan and evaluations** MSc in Biology 2024-2025



### Complementary information

#### **Evaluations and regulations**

- Course and exam registration in IS-Academia is compulsory for course validation.
- For details regarding Faculty regulations, please consult the *Règlement d'études et d'examens de la Faculté des sciences* and existing directives on the Faculty's webpage (www.unine.ch/sciences).
- Continous assessment evaluations (pass or graded) are specified in the corresponding course description.
- Elective courses must be validated with a sufficient mark (4.0) and cannot be compensated.
- When an evaluation of a course chosen from the modules Computer tools, Seminars and Laboratory and field methods is failed and not compensated after a second attempt, students have the option to choose another course of the same module until all choices are exhausted.

#### Abbreviations and grades

- **labs** = laboratory work
- **EXE** = exercises
- **EXC** = excursions
- **CA** = continous assessment
- hd = half-days
- **d** = days

S

- N.N. = teacher to be designated
- A = autumn semester
  - = spring semester

#### Remarks

- Specializations : Students must choose two specializations from two different groups.
- Master thesis : Must be supervised by a professor of the Institute of Biology.
- Internship : Students can validate an approx. 4 week internship for 6 ECTS credits during their Master program. For all related details, please contact Prof. S. Rasmann.
- Free electives: Up to 12 ECTS credits can be validated as free electives. Courses must be pre-approved by the prof. in charge of the curriculum. In addition, they must be Master level courses and in relation to the field of Biology.
- Excursions : Available space may be limited (not possible for external students).

#### Transitional provisions :

- Sustainable agriculture specialisation: Students that registered all the courses of the specialisation during the 2023-2024 academic year or previously, but did not acquire the corresponding ECTS credits, must validate the module in accordance with the 2023-2024 study plan. Student that did not register all the courses of the specialisation by the end of the 2024 spring semester will be contacted individually in order to establish personal transitional provisions.
- Chemical ecology specialisation: Students that registered all the courses of the specialisation during the 2023-2024 academic year or previously, but did not acquire all the corresponding ECTS credits, must validate the module in accordance with the 2023-2024 study plan. Student that did not register all the courses of the specialisation by the end of the 2024 spring semester will be contacted individually in order to establish personal transitional provisions.
- **Biodiversity specialisation:** Student following this specialisation in 2023-2024 but who didn't register the "Genomics of biodiversity" course in 2023-2024, must validate the specialisation according to the 2023-2024 study plan.
- Ecology and Evolution specialisation: Students that registered all the courses of the specialisation during the 2023-2024 academic year or previously, but did not acquire all the corresponding ECTS credits, must validate the module in accordance with the 2023-2024 study plan. Students that did not register all the courses of the specialisation by the end of the 2024 spring semester will be contacted individually in order to establish personal transitional provisions.



### Learning outcomes

#### On completion of the program, students will be able to:

#### Knowledge and understanding:

- Specify suitable analytical tools for data problems in the domain.
- Summarise current research in biology.
- Identify main methods in biodiversity.
- Examine major tools in biology in the laboratory.

#### Applying knowledge and understanding:

- Develop large datasets acquired experimentally or in the field.
- Organise large datasets using suitable computer programs.
- Design models for biological problems.
- Critically analyse scientific publications in the domain to judge their scientific quality.
- Reproduce methods in molecular biology.
- Test natural substance analysis techniques.
- Solve problems of space representation.
- Experiment with real biological problems.
- Use real biological methods.

#### Making judgements:

• Criticise current research in biology based on acquired knowledge about methods and through literature research.

#### Communication skills:

• Communicate specific scientific results to scientific and non-scientific audiences in oral and written form (oral presentation, poster presentation, written report and scientific publication).

#### Learning skills:

• Manage a scientific project including data collection, organisation and analysis of data and presentation of results in oral and written form.