On certain positive integer sequences

Giuseppe Melfi
Statistics Group, University of Neuchâtel

Let $k \geq 2, l \geq 1, m \geq 2$ be positive integers. We say that a positive integer n satisfies the property (k, l, m) if the sum of digits of n^{m} in its expansion in base k is l times the sum of digits of the expansion of n in base k. Such numbers will be called (k, l, m)-numbers.

The simplest case is $(k, l, m)=(2,1,2)$, which corresponds to the positive integers n for which the numbers of ones in their binary expansion is equal to the number of ones in n^{2}. The (2,2,2)-numbers are the integers n such that n^{2} has twice as many 1's in its binary expansion as n. Roughly speaking, since the lenght of n^{2} is twice the lenght of n if a digit 0 is allowed, the $(2,2,2)$ numbers are the integers n such that n and n^{2} have the same percentage of 1 's.

In a recent paper that will appear on Journal of Number Theory, I studied the $(2,1,2)$-numbers.

Several questions, concerning both the structure properties and asymptotic behaviour, can be raised. Is there a necessary and sufficient condition to assure that a number is of type $(2,1,2)$? What is the asymptotic behaviour of the counting function of the ($2,1,2$)-numbers? The irregularity of distribution does not suggest a clear answer to these questions.

Let $p_{(k, l, m)}(n)$ be the number of the (k, l, m)-numbers which does not exceed n.

In cooperation with C. Sàndor of Budapest, I proved some estimates of particular cases of this function. In particular we proved that $p_{(2,2,2)}(x) \gg$ $x^{0.0909}$ and $x^{0.025} \ll p_{(2,1,2)}(x) \ll x^{0.9183}$, providing non-trivial polynomial bounds.

The following conjectures, supported by computations and by an empirical approach based on probability theory, are open:

Conjecture 1 For each k one has:

$$
p_{(2, k, k)}(x)=\frac{x}{(\log x)^{1 / 2}} G_{k}+R(x)
$$

where $G_{k}=\sqrt{\frac{2 \log 2}{\pi\left(k^{2}+k\right)}}$ and $R(x)=o\left(x /(\log x)^{1 / 2}\right)$.

Conjecture 2

$$
p_{(2,1,2)}(x)=x^{\alpha+o(1)}
$$

where $\alpha=\log 1.6875 / \log 2 \simeq 0.7548875$.

