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Problem: Data Integration

• Massive data are collected from various sources:
• online surveys
• social networks
• business transactions
• sensor networks
• scientific research
• (in a public health setting) disease registry, clinical trials,

epidemiological studies, health surveys, hospital records,
healthcare databases, etc.

• etc.

• The representativeness of a sample critically depends on
technology for data collection

• A remedy: to merge multiple data sets with different coverage
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Motivating Examples: Telephone Surveys

Cell Phone Users
(Data Source 1)

Landline Users
(Data Source 2)

Sample 1

Duplicated Selection

Population

i.i.d. Sample
Sample 2

Sampling 
without Replacement
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Motivating Examples: Study on Rare Populations

Maori People
(Data Source 1)

Auckland Population
(Data Source 2)

Population 

i.i.d. Sample Sampling 
without Replacement
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Motivating Examples: Combining Medical Studies

Clinical Trial

Health Survey

Population 

i.i.d. Sample Sampling 
without Replacement

Cohort Study

Disease Registry
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Two-Stage Formulation

Data Source 1

Data Source 2

Sample 1

Population 

i.i.d. Sample

Sample 2

Sampling 
without Replacement

V X ,V

π(V )=n(1)/N (1)

π(V )=n(2)/N (2)

∼P
0

V
(2)

V
(1)

(X (1)
,V

(1))

(X (2)
,V

(2))

The issue: Biased and Dependent Sample with Duplicated Selection

• Biasedness

• Data Sources of Different Sizes
• Overlapping Data Sources

• Dependence

• (Across Samples) Duplicated Selection
• (Within Samples) Sampling without Replacement

• Lack of Identification of Duplicated Items

• Independent Data Collection across Data Sources
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Resemblance to Other Frameworks

• Stratified Sampling with Overlapping “Strata”

• (Practice) Single entity designs the entire sampling so that
duplicated items can be identified

• (Method) Naive method produces bias from overlaps
• (Theory) The quantity of interest is decomposed into stratum

means, and they are asymptotically independent due to the
disjoint nature of strata.

• Multiple-frame surveys: sampling from overlapping sampling frames

• (Practice) Applications are limited to survey sampling
• (Method) Hartley’s estimator works well
• (Theory) Finite population framework
• (Theory) No empirical process theory

• Meta-analysis

• (Practice) Does not cover overlaps in samples

• Record Linkage: Identification of duplications

• (Issue) Produces bias of wrong links and non-links
• (Theory) Requires a correctly specified model of linking errors
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Comparison with Approaches in Sampling Theory
Finite Population Super Population Ours

Randomness
sampling from data sources X X X
distribution on variables X X

Model on Variables X X
Parameter

finite population parameter X
parameter in the model X X

Dependence
within samples X X X
across samples X X

Applications
sample mean X
generalized linear model ? X X
semiparametric model ? X

Asymptotics
LLN X X(?) X
CLT X X(?) X
U-LLN for a class of functions X
U-CLT for a class of functions X

Conditions
super population X X
design X X
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Section 2

Empirical Process
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Empirical Process Approach
• Empirical process is a stochastic process
• very useful in semiparametric and nonparametric models.
• Major tools for statistical theory

• Uniform LLN and Uniform CLT
• Rate of convergence
• Concentration inequalities, etc.

• Let X1, . . . ,Xn i.i.d. P taking values in X . The empirical measure is
defined as

Pn =
1

n

n∑
i=1

δXi

where δx is a Dirac measure putting a unit mass at x .
• The empirical measure is a probability measure. The probability of

the event A ⊂ X under Pn is

Pn(A) =
1

n

n∑
i=1

1A(Xi ) =
#{Xi : Xi ∈ A}

n
,

and the expectation of f (X ) under Pn is

Pnf =
1

n

n∑
i=1

f (Xi ).
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• The empirical process indexed by the class F of functions on
X is defined as

Gn =
√
n(Pn − P).

• This is a stochastic process indexed by F , i.e., given f ∈ F ,
the following random variable is obtained:

Gnf =
√
n(Pnf − Pf ) =

√
n

(
1

n

n∑
i=1

f (Xi )− Pf

)
.

Here Pf = EP f (X ) is the expectation of f (X ) under P.

• Examples of index sets are
• F = {t 7→ 1(−∞,t](s) : t ∈ R} yields Pn1(−∞,t] = Fn(t)
• F = {x 7→ log pθ(x) : θ ∈ Θ}
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• An important goal of modern empirical process theory is to provide a uniform
control of the sample average over the class of functions.

The class F of functions on X is called P-Glivenko-Cantelli if

‖Pn − P‖F ≡ sup
f∈F
|Pnf − Pf | →P or a.s. 0.

• The class F of functions on X is called P-Donsker if

Gn  G in `∞(F),

where G is the P-Brownian bridge, a Gaussian process with covariance function

ρP(f , g) = CovP(f (X ), g(X )) = Pfg − (Pf )(Pg) for f , g ∈ F .

• At f , g ∈ F , this implies
(

Gnf
Gng

)
→d

(
Gf
Gg

)
∼ N

((
0
0

)
,

(
ρP (f , f ) ρP (f , g)
ρP (f , g) ρP (g, g)

))
.

• There exits a version of a Gaussian process with sample continuity. Here
we further have asymptotic equicontinuity:

sup
ρP (f ,g)<δ

|Gn(f − g)| = oP(1), as δ ↓ 0.
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Why Empirical Process Theory?

We have enough tools already?

• “Regularity conditions”

• Calculus

• Law of Large Numbers (LLN)

• Central Limit Theorem (CLT)

• Martingale theory if you like
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Motivating Example: Uniform LLN
• M-estimator θ̂n = argmaxθ∈Θ Pnm(θ)

• Condition for Consistency (van der Vaart 1998, Theorem 5.7)

sup
θ∈Θ
|Pnm(θ)− Pm(θ)| →P 0.

• In some literature, it is claimed that under “regularity
conditions”, the law of large numbers yields

1

n

n∑
i=1

log pθ̂n(Xi )→a.s. E log pθ0(X ) (?)

• The law of large numbers requires the independent summand:

1

n

n∑
i=1

log pθ̂n(Xi )︸ ︷︷ ︸
Independent?

• The sample X1, . . . ,Xn is independent but θ̂n depends on
X1, . . . ,Xn. Hence log pθ̂n(X1), . . . , log pθ̂n(Xn) are dependent.
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• The Glivenko-Cantelli theorem and the dominated convergence
theorem yield

1

n

n∑
i=1

log pθ̂n (Xi ) =
1

n

n∑
i=1

log pθ̂n (Xi )− E log pθ̂n (X ) + E log pθ̂n (X )

≤ sup
θ∈Θ

∣∣∣∣∣1n
n∑

i=1

log pθ(Xi )− E log pθ(X )

∣∣∣∣∣+ E log pθ̂n (X )

→ 0 + E log pθ0 (X )
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Motivating Example: Asymptotic Equicontinuity
• The MLE solves the likelihood equation (1/n)

∑n
i=1

˙̀
θ̂n

(Xi ) = 0. For asymptotic
normality, Taylor’s theorem from Calculus yields

0 =
1

n

n∑
i=1

˙̀
θ̂n

(Xi ) =
1

n

n∑
i=1

˙̀
θ0

(Xi ) +
1

n

n∑
i=1

῭
θ∗n (Xi )(θ̂n − θ0).

Hence we can apply LLN and CLT to obtain

√
n(θ̂n − θ0) = −

(
1

n

n∑
i=1

῭
θ∗n (Xi )

)−1√
n

1

n

n∑
i=1

˙̀
θ0

(Xi )→d X ∼ N(0, I−1).

• Rubin-Bleuer and Kratina (Annals of Statistics, 2005) adopted a two-phase
framework for estimating a Euclidean parameter from estimating equations:
√
N(θ̂N − θ0) =

√
N(θ̂N − θN)︸ ︷︷ ︸

Asymptotic Normality from Design Conditions

+
√
N(θN − θ0)︸ ︷︷ ︸

Asymptotic Normality from Superpopulation Condition

where θ̂N is a solution to weighted estimating equations and θN is a solution of
unweighted estimating equations.
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The previous argument works for many parametric models. In
survival analysis, however, semiparametric models play a pivotal
role in determining effects of treatments and risk factors. A
semiparametric model is a collection of probability measures
indexed by

• a finite-dimensional parameter, and

• a infinite-dimensional parameter.

An example is the Cox proportional hazards model with regression
parameter β ∈ Rd and the cumulative hazard function Λ in the
class of positive increasing functions. The conditional hazard
function given covariates X = x is

λ(t|x) = λ0(t) exp(xTβ).

The following is the likelihood for the Cox model with current
status data. Can you use the Taylor expansion around
θ0 = (β0,Λ0) as usual?

˙̀
β(θ) =

1

n

n∑
i=1

Xie
βTXi Λ(Yi )

∆i
1− e−eβ

T Xi Λ(Yi )

e−eβ
T Xi Λ(Yi )

− (1−∆i )
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Suppose the asymptotic equicontinuity condition holds:

√
n

 1

n

n∑
i=1

˙̀
θ̂n

(Xi )− E log ˙̀
θ̂n

(X )

−√n

 1

n

n∑
i=1

˙̀
θ0

(Xi )− E log ˙̀
θ0

(X )

 = oP (1 +
√
n‖θ̂n − θ0‖).

Since (1/n)
∑n

i=1
˙̀
θ̂n

(Xi ) = 0 and E ˙̀
θ0

(X ) = 0, it follows

√
n(E ˙̀

θ̂n
(X )− E ˙̀

θ0
(X ))

= −
√
n

{
1

n

n∑
i=1

˙̀
θ̂n

(Xi )− E log ˙̀
θ̂n

(X )

}

=
√
n

{
1

n

n∑
i=1

˙̀
θ0

(Xi )− E log ˙̀
θ0

(X )

}
+ oP(1 +

√
n‖θ̂n − θ0‖)

If θ → E ˙̀
θ(X ) is differentiable at θ0 and

√
n‖θ̂n − θ0‖ = OP(1), we obtain

√
nE ῭

θ0
(X )(θ̂n − θ0) =

√
n

{
1

n

n∑
i=1

˙̀
θ0

(Xi )− E log ˙̀
θ0

(X )

}
+ oP(1).

For semiparametric models,

• the derivative E ῭
θ0

is replaced by the functional derivative.

• the number of the likelihood equations becomes infinitely many.
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Motivating Example: Martingale

• The Cox’s partial likelihood score can be written as
n∑

i=1

∫ τ

0

Hi (s)︸ ︷︷ ︸
Predictable Process

d Mi (s)︸ ︷︷ ︸
Martingale

to which Martingale Central Limit Theorem applies.

• In the analysis of complex samling data where sampling depends on
the event, we analyze inverse probability weighted partial likelihood
score

n∑
i=1

∫ τ

0

Wi︸︷︷︸
Not Predictable

H(s)︸︷︷︸
Predictable Process

d M(s)︸ ︷︷ ︸
Martingale

so that the Martingale CLT does not apply.

• the Martingale CLT and Empirical process approaches must address
dependence issues from complex sampling but the former approach
intrinsically fails to address sampling that depends on events even if
dependence can be addressed.
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dependence issues from complex sampling but the former approach
intrinsically fails to address sampling that depends on events even if
dependence can be addressed.
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Some Literature on the Cox Model in Sampling Theory

• D.Y. Lin, On fitting Cox’s proportional hazards models to survey
data, Biometrika 87 (2000) 37-47.

• The paper simply cited Andersen and Gill (Annals of Statistics
10(4) 1982 1100-1120) for consistency but there are too many
difficulties left to the reader (martingale, LLN, etc.)

• The paper simply assumes the existence of the U-CLT a priori.

• S. Rubin-Bleuer, “The proportional hazards model for survey data
from independent and clustered super-populations,” Journal of
Multivariate Analysis 102 (2011), 884-895

• Most parts assumes sampling does not depend on the event so
that the martingale CLT can be used

• Consistency results counts on K.H. Yuan an R. Jennrich ( J.
Multivariate Anal. 65 ,1998, 245-260) where the uniform LLN
are assumed that this condition is not verified in the paper.

• The last part where sampling depend on the event counts on
Lin (2000).
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Some Literature on Empirical Process Theory
on Complex Surveys

• Bertail, P., Chautru, E. and Clémençon, S. (2017). Empirical processes in

survey sampling with (conditional) Poisson designs. Scand. J. Stat. 44 97-111.

• Rejective Sampling
• U-LLN is not obtained

• Boistard, H., Lopuhaa̋ , H. P. and Ruiz-Gazen, A. (2017). Functional central

limit theorems for single-stage sampling designs. Ann. Statist. 45 1728-1758.

• Single-stage sampling in a general way
• finite dimensional CLT is assumed
• U-LLN is not obtained
• A class of functions is restricted to a indicator function of variables less

than some number

• Daniel Bonnéry, F. Jay Breidt, and François Coquet, Uniform convergence of

the empirical cumulative distribution function under informative selection from a

finite population

• A class of functions is restricted to a indicator function of variables less
than some number
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Section 3

Our Approach
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Setting (2 Data Sources)
• V : auxiliary variables available for all items

• V1, . . . ,VN i.i.d.
• V(j), j = 1, 2: sampling frames of size N(j) (V(1) ∩ V(2) 6= ∅)
• V ∈ V(j) means the item belong to source j

• n(j) items are selected without replacement from source j
• R(j), j = 1, 2: sampling indicator from source j

(R
(j)
i ’s with Vi ∈ V(j) are dependent)

• π(j)(v): sampling probability from source j (e.g. π(1)(v) = n(1)/N(1)IV(1) (v))

• n(j)/N(j) → p(j) > 0.
• X : only available on selected items

Data Source 1

Data Source 2

Sample 1

Population 

i.i.d. Sample

Sample 2

Sampling 
without Replacement

V X ,V

π(V )=n(1)/N (1)

π(V )=n(2)/N (2)

∼P
0

V
(2)

V
(1)

(X (1)
,V

(1))

(X (2)
,V

(2))
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Canonical Estimator: Hartley’s Estimator
Solution to Duplicated Selection: Hartleys’ estimator (1962, 1974)

• reweighing function ρ : V → R2

ρ(v) =
(
ρ(1)(v), ρ(2)(v)

)
=


(1, 0) if v ∈ V(1) ∩

(
V(2)

)c
(0, 1) if v ∈

(
V(1)

)c ∩ V(2)

(c1, c2) if v ∈ V(1) ∩ V(2)

where c1 + c2 = 1.

• Hartley’s estimator of X = (1/N)
∑N

i=1 Xi is

1

N

N∑
i=1


R

(1)
i

π(1)(Vi )︸ ︷︷ ︸
Inverse probability

weighting for source 1

ρ(1)(Vi )︸ ︷︷ ︸
Reweighing
for Source 1

+
R

(2)
i

π(2)(Vi )︸ ︷︷ ︸
Inverse probability

weighting for source 2

ρ(2)(Vi )︸ ︷︷ ︸
Reweighing
for Source 2

Xi
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• Unbiasedness:
• Biased Sampling: E [R(j)|V ,X ] = π(j)(V ).
• ρ(1)(v) + ρ(2)(v) = 1 for every v .

• No identification of duplicated items:

1

N

N∑
i=1

R
(1)
i

π(1)(Vi )
ρ(1)(Vi )Xi︸ ︷︷ ︸

computed from sample from source 1

+
1

N

N∑
i=1

R
(2)
i

π(2)(Vi )
ρ(2)(Vi )Xi︸ ︷︷ ︸

computed from sample from source 2
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Hartley-Type Empirical Process

• The empirical measure is replaced by Hartley’s estimator of the
distribution function. Define Hartley-type inverse probability
weighted (H-IPW) empirical measure by

PH
N =

1

N

N∑
i=1

(
R

(1)
i

π(1)(Vi )
ρ(1)(Vi ) +

R
(2)
i

π(2)(Vi )
ρ(2)(Vi )

)
δXi

• Note that this is NOT a probability measure measure:

PH
N1 =

1

N

N∑
i=1

(
R

(1)
i

π(1)(Vi )
ρ(1)(Vi ) +

R
(2)
i

π(2)(Vi )
ρ(2)(Vi )

)
6= 1

in general in contrast to Pn1 = 1.

• Define H-IPW empirical process by

GH
N =
√
N(PH

N − P).
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Decomposition of H-Empirical Process

Key Idea 1: Decompose H-Empirical Process into different sampling:

• Stage 1 + Stage 2:

GH
N f =

√
N(PH

N − P)f +
√
N(PN − PN)f

=
√
N(PN − P)f +

√
N(PH

N − PN)f

= GN f︸︷︷︸
Sampling from Population

+
√
N(PH

N − PN)f︸ ︷︷ ︸
Sampling from Data Sources

• It can be shown that GN f and
√
N(PH

N − PN)f are uncorrelated. If the
latter processes converge to Gaussian process, the limiting process of GH

N

is a sum of independent Gaussian processes.

• It follows by Donsker theorem,

GN  G.
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Key Idea 2: View sampling from sources as a single realization of m out of n
without-replacement bootstrap with m = n(j) and n = N(j).

• The average within data source j before sampling

P(j)

N(j) f =
1

N(j)

∑
i :Vi∈V(j)

f (Xi )

plays a role of sample average in a bootstrap framework.

• The average within data source j after sampling

P̂(j)

n(j) f =
1

n(j)

∑
i :Vi∈V(j)

R
(j)
i f (X(j),i )

plays a role of bootstrap sample average in a bootstrap framework.

• Sampling from each source:

√
N(PH

N − PN)f =
2∑

j=1

√
N(j)

N

√
N(j)(P̂(j)

n(j) − P(j)

N(j) )ρ
(j)f

where with reindexing X(j),i , i = 1, . . . ,N(j), j = 1, 2.

• It can be shown that GN and
√

N(j)/N
√
N(j)(P̂(j)

n(j) − P(j)

N(j) ) are all
uncorrelated.
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Theorem (Uniform Law of Large Numbers)
Suppose the class F of measurable functions is P-Glivenko-Cantelli. Then

‖PH
N − P‖F = sup

f∈F
|PH

N f − Pf | →P 0.

Theorem (Uniform Central Limit Theorem)
Suppose the class F of measurable functions is the P-Donsker. Then

GH
N  G +

2∑
j=1

√
P(V ∈ V(j))

√
1− p(j)

p(j)
G(j)ρ(j)·,

where P-Brownian bridge G, and P(j)-Brownian bridge G(j) are all
independent. Here P(j) is a conditional probability measure given
membership in source j .



Introduction Empirical Process Approach Numerical Study Discussion

Implications

• Asymptotic distribution of GH
N f :

GH
N f →d ZH ∼ N(0,ΣH)

with

ΣH = Var(f (X ))︸ ︷︷ ︸
Population
Variance

+
2∑

j=1

P(V ∈ V(j))
1− p(j)

p(j)
Var

{
ρ(j)(V )f (X )|V(j)

}
︸ ︷︷ ︸

Design Variance

.

• Optimal ρ(j) and Optimal Calibration (Deville and Sarndal, JASA,
1992) can be derived from this variance formula.

• (Our Approach) Optimal based on the limiting distribution of
GH

N f =
√
N(PH

N − P)f .
• (Finite Population Approach, Lohr and Rao, “Estimation in

multiple-frame surveys,” JASA, 2006, 101, 1019-1030. )
Optimality based on the variable PH

N f .
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Calibration

• General Idea (Deville and Sarndal, JASA 1992): Improve estimation

of Horvitz-Thompson estimator of PNX = (1/N)
∑N

i=1 Xi by the
following relationship

PNV =
1

N

N∑
i=1

Vi︸ ︷︷ ︸
Sample Average

≈ 1

N

N∑
i=1

Ri

π(Vi )
Vi︸ ︷︷ ︸

Horvitz-Thompson Estimator

• For Multiple-frame sampling, Ranalli et al (2018) uses several
different relationship to improve the estimation of PNX . One of
them is to use the following idea:

PNV︸ ︷︷ ︸
Sample Average

≈ PH
NV︸ ︷︷ ︸

Hartley’s estimator
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• Another method considered by Ranalli et al. (2018) uses the
relationship given by

PNVI{V ∈ V(j)}︸ ︷︷ ︸
Sample Average in Source j

≈ PH
NVI{V ∈ V(j)}︸ ︷︷ ︸

Hartley’s estimator in Source j

• Our approach:

1

N(j)

∑
i :Vi∈V(j)

ρ(j)(Vi )Vi I{Vi ∈ V(j)}

︸ ︷︷ ︸
Sample Average in Source j

≈ 1

N(j)

∑
i :Vi∈V(j)

R
(j)
i

π(j)(Vi )
ρ(j)(Vi )Vi

︸ ︷︷ ︸
Horvitz-Thompson Estimator in Sourcej

Method Ours Ranalli (2)

Which variables? ρ(1)(V )V V in source 1
ρ(2)(V )V V in source 2

Where variable come from? Sampling from source 1 Both sampling
Sampling from source 2 Both sampling

What is computed Horvitz-Thompson Hartley
Horvitz-Thompson Hartley
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General semiparametric model

• Semiparametric model: X ∼ Pθ,η ∈ P
• (parametric) θ ∈ Θ ⊂ Rp

• (nonparametric) η ∈ H ⊂ B, B, a Banach space
• Scores ˙̀

θ,η for θ and Bθ,ηh for η with h ∈ H, Hilbert space

• Efficient influence function ˜̀
0

• Semiparametric efficiency bound I−1
0 = E ˜̀⊗2

0

• Assumptions (for complete data)

• Smoothness of the model
• Asymptotic equicontinuity
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Hartley-type Weighted Likelihood Estimator (H-WLE)

• The MLE (θ̂, η̂) for complete data is obtained from the likelihood
equations;

1

N

N∑
i=1

˙̀
θ̂,η̂(Xi ) = oP(N−1/2),

1

N

N∑
i=1

Bθ̂,η̂h(Xi ) = oP(N−1/2).

• The WLE (θ̂N , η̂N) is obtained from the weighted likelihood
equations;

1

N

N∑
i=1

{
R

(1)
i

π(1)(Vi )
ρ(1)(Vi ) +

R
(2)
i

π(2)(Vi )
ρ(2)(Vi )

}
˙̀
θ̂N ,η̂N

(Xi ) = oP(N−1/2),

1

N

N∑
i=1

{
R

(1)
i

π(1)(Vi )
ρ(1)(Vi ) +

R
(2)
i

π(2)(Vi )
ρ(2)(Vi )

}
Bθ̂N ,η̂N

h(Xi ) = oP(N−1/2).
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Theorem (H-WLE for Data Integration)
Assume the WLE’s are consistent, and ‖η̂N − η0‖ = OP(N−β). Then

√
N(θ̂N − θ0) Z ∼ N(0,Σ),

and

Σ = I−1
0︸︷︷︸

Superpopulation Variance

+
J∑

j=1

P(V ∈ V(j))
1− pj

pj
Var(ρ(j)(V )˜̀

0|V(j))

︸ ︷︷ ︸
Design Variances

.
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Variance Estimation: Plug-in Estimator

• For sampling fraction and data source probability

p̂j =
n(j)

N(j)
, ̂P(V ∈ V(j)) =

N(j)

N

• For the inverse of the efficient information I−1
0 = E ˜̀⊗2

0 ,

Î−1
0 = PH

N
˜̀⊗2

θ̂N ,η̂N

• For variance from data sources,

̂Var(ρ(j) ˜̀
0|V(j)) =

1

N(j)

N(j)∑
i=1

R
(j)
(j),i

π(j)(V(j),i )

{
ρ(j)(V(j),i )˜̀

θ̂N ,η̂N
(X(j),i )

}⊗2

−


N(j)∑
i=1

R
(j)
(j),i

π(j)(V(j),i )
ρ(j)(V(j),i )˜̀

θ̂N ,η̂N
(X(j),i )


⊗2
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Section 4

Numerical Study
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Simulation for Cox Model with Right Censoring

• T ∼Weibull(α, β): time to event

• C ∼ Uniform(0, c): censoring variable

• Y = min{T ,C}, ∆ = I{T ≤ C}.

• covariates Z1 ∼ Bernoulli(1/2), Z2 ∼ N(0, 1)

• Z1 is collected only in the final combined sample

• Data sources V(j) are created from V = (Y ,∆,Z2)
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V(1) V(2) N N(1) N(2) n(1) n(2) Duplication
Scenario 1 Z2 ≥ −1 Z2 ≤ 1 500 421 421 85 127 21

10000 8413 8414 1683 2525 410
Scenario 2 V Z2 ≤ 1 500 500 421 100 127 25

10000 10000 8413 2000 2524 505
Scenario 3 V ∆ = 1 500 500 76 100 76 15

10000 10000 1529 2000 1529 305

Duplication

N N(1) N(2) N(3) n(1) n(2) n(3) twice thrice
Scenario 4 500 76 423 278 76 43 28 13 1

10000 8475 5564 1529 848 556 1529 258 9

Table: Sample sizes and the numbers of duplications based on 2000
simulated datasets. In Scenarion 4, V(1) = {∆ = 1}, and membership in
V(2) ∩ {V(3)}C , V(2) ∩ V(3), and {V(2)}C ∩ V(3) are determined via
multinomial logistic regression on Z2
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θ1 = θ2 log 2 0
N 500 10000 500 10000 500 10000 500 10000

Scenario 1 Scenario 3
θ1 Bias .024 .0061 .011 .0017 .005 .0009 .006 .0011

SD .482 .0985 .429 .0887 .330 .0733 .301 .0676
SEE .467 .0989 .419 .0899 .330 .0728 .305 .0668

θ2 Bias .005 .0031 .011 .0011 .023 .0003 .001 .0007
SD .251 .0526 .234 .0495 .181 .0378 .163 .0342

SEE .260 .0524 .244 .0507 .171 .0381 .156 .0334

Scenario 2 Scenario 4
θ1 Bias .062 .0005 .009 .0010 .010 .0019 .005 .0003

SD .479 .0967 .416 .0876 .368 .0789 .372 .0775
SEE .467 .0981 .412 .0871 .355 .0789 .347 .0765

θ2 Bias .016 .0000 .015 .0001 .023 .0018 .012 .0016
SD .250 .0526 .222 .0493 .192 .0407 .185 .0367

SEE .252 .0510 .232 .0480 .181 .0407 .169 .0367

Table: Bias, an absolute Monte Carlo sample bias; SD, a Monte Carlo
sample standard deviation; SEE, average of a plug-in estimator of a
standard error.
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(α, β) = (.2, .5) N = 500 N = 10000
θ1 = log(2) w/o SC C DC w/o SC C DC

MLE .246 .0534
S .368 .333 .370 .371 .0789 .0720 .0789 .0789

SF .375 .341 .376 .376 .0809 .0740 .0809 .0804
B .497 .474 .497 .497 .1060 .1005 .1060 .1060

θ2 = log(2) w/o SC C DC w/o SC C DC
MLE .121 .0270

S .192 .188 .193 .193 .0407 .0395 .0405 .0403
SF .197 .192 .197 .196 .0414 .0401 .0412 .0409
B .258 .253 .258 .258 .0530 .0517 .0530 .0530

Note: S, the proposed weights; SF, ρ for a single-frame estimator; B, a balanced weights;
w/o, non-calibration; SC, the proposed calibration; C, the standard calibration; DC, the
data-source-specific calibration. All calibrations use U and Y .
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National Wilms Tumor Study

• Complete information is available for comparison of designs

• N = 1957

• Histology is determined in the final sample

• Event = Relapse of Wilms Tumor

• Data integration (n = 506 with 68 duplications)
• Data Source 1: Death (all sampled)
• Data Source 2: Unfavorable Histology (50% sampled)
• Data Source 3: Entire Cohort (10% sampled)

• Stratified Sample (n = 502)
• Stratum 1: Death (all sampled)
• Stratum 2: Alive with Unfavorable Histology (50% sampled)
• Stratum 3: the rest (14% sampled)
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Full cohort Data integration Stratified sampling
ρ Proposed Balanced
# subjects 1957 438 (506 with duplication) 502
Duplication 0 64 (twice) 2 (thrice) 0
Partial likelihood -2458.8 -2464.7 -2463.2 -2467.2

Variable θ̂ SE θ̂ SE θ̂ SE θ̂ SE
Histology 1.430 0.125 1.243 0.236 1.383 0.268 1.419 0.190
Age 0.084 0.021 0.045 0.043 0.043 0.047 0.110 0.035
Stage (III/IV) 1.506 0.356 2.680 0.761 2.589 0.848 2.157 0.705
Tumor 0.064 0.020 0.082 0.046 0.076 0.052 0.106 0.041
Stage ×Tumor -0.079 0.029 -0.156 0.061 -0.079 0.068 -0.134 0.055
Note: Histology is measured at a central laboratory.

Table: Point estimates and estimated standard errors in the analysis of
the NWTS study with different sampling schemes. “Proposed” means
results for the estimator with proposed ρ(j) and “Balanced” means results
for the estimator with the value for ρ(j) across sources.
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Section 5

Discussion
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• Empirical process theory is shown to be extended to data
integration problems.

• Empirical process theory is powerful tool to study
semiparametric models under complex surveys.

• Discussion above for more than 2 sources and stratified
sampling from each source as an alternative to sampling
without replacement are straightforward.

• Other sampling designs to combine different data sources are
to be investigated.

• Many methods proposed in the i.i.d. setting should be
modified to accomodate sampling procedures.
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Thank you!
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