On Testing for Informative Selection in Survey Sampling 1

(plus Some Estimation)

Jay Breidt Colorado State University Survey Methods and their Use in Related Fields Neuchâtel, Switzerland August 23, 2018

Joint work with various people, acknowledged as we go.

- Finite population $U = \{1, 2, \dots, N\}$
- \bullet Random variables $\{Y_k: k \in U\}$ are independent and identically distributed
- \bullet Observe the realized values not for all of U, but only a random subset:

$$\{y_k: k \in s \subset U\}$$

- \bullet Goal is inference on the distribution of Y, or some of its characteristics
- \bullet Concerned about effect of selection of $s \subset U$ on inference

• Define sample membership indicators I_k , where

$$I_k = \begin{cases} 1 & \text{if } k \in s \\ 0 & \text{otherwise} \end{cases}$$

- \bullet If the selection is designed/controlled, the event $\{k\in s\}$ may depend on Y_k
- \bullet If the selection is not designed/controlled, the event $\{k\in s\}$ may depend on Y_k
- \bullet Probability of selection, in general, may depend on Y_k

- \bullet To allow probability of selection to depend on Y_k , make it random
- Inclusion probability is the realization of random variable Π_k that may depend on Y_k :

$$\pi_k = \mathbb{P}\left[I_k = 1 \mid Y_k = y_k, \Pi_k = \pi_k\right]$$
$$= \mathbb{E}\left[I_k \mid Y_k = y_k, \Pi_k = \pi_k\right]$$

- Cut-off sampling: $\pi_k = \rho(y_k) \mathbb{1}_{\{y_k > \tau\}}$.
- Case-control study (binary Y):

$$\pi_k = \begin{cases} 1, & \text{for disease cases } (y_k = 1) \\ \rho < 1, & \text{for non-disease controls } (y_k = 0) \end{cases}$$

• Choice-based sampling (categorical Y):

$$\pi_k = \sum_{j=1}^J \rho_j \mathbb{1}_{\{y_k = j\}}.$$

• Adaptive sampling, quota sampling, endogenous stratification, ...

- Length-biased sampling: $\pi_k \propto y_k > 0$
- \bullet Good design for y_k tries to be length-biased
- Why? For fixed size design,

$$\begin{aligned} \operatorname{Var}\left(\sum_{k\in s} \frac{y_k}{\pi_k} \left| \mathbf{Y}_U = \mathbf{y}_u, \mathbf{\Pi}_U = \mathbf{\pi}_U \right) &= -\frac{1}{2} \sum_{j,k\in U} \Delta_{jk} \left(\frac{y_j}{\pi_j} - \frac{y_k}{\pi_k} \right)^2 \\ &= -\frac{1}{2} \sum_{j,k\in U} \Delta_{jk} \left(\frac{y_j}{cy_j} - \frac{y_k}{cy_k} \right)^2 \\ &= 0 \end{aligned}$$

• Unbiased estimator with zero variance!

y = textile fiber length (Cox, 1969), intercepted individual's time spent at recreational site, size of sighted wild animal, lifetime of marked-recaptured individual, disease latency period,...

- \bullet Often, Π_k does not depend explicitly on Y_k , but Y_k has predictive power for Π_k
- Consider parametric empirical models:

$$\mathbb{E}\left[\Pi_k \mid Y_k = y_k\right] = \mu(y_k; \xi),$$

where ξ are nuisance parameters with respect to Y

• Or consider nonparametric empirical models:

$$\mathbb{E}\left[\Pi_k \mid Y_k = y_k\right] = \mu(y_k),$$

• Parametric model for average inclusion probability:

$$\mathbb{E}\left[\Pi_k \mid Y_k = y_k\right] = \mu(y_k;\xi)$$

• Relevant distribution of observed Y_k is

$$f(y \mid I_k = 1) = \frac{\mu(y;\xi)}{\int \mu(y;\xi)f(y)\,dy}f(y) \eqqcolon \rho(y;\xi)f(y),$$

in which the denominator depends on $f % \mathcal{F} = \mathcal{F} \left(f \right) \left(f \right)$

 \bullet If μ does not depend on y, then

$$f(y \mid I_k = 1) = \frac{\mu(\xi)}{\mu(\xi) \int f(y) \, dy} f(y) = f(y)$$

- Suppose Y_k iid $\mathcal{N}(\theta, \sigma^2)$
- Further suppose:

$$\Pi_k \mid (Y_k = y_k) \sim \log \mathcal{N} \left(\xi_0 + \xi y_k, \tau^2\right)$$
$$\mathbb{E} \left[\Pi_k \mid Y_k = y_k\right] = \exp \left(\xi_0 + \xi y_k + \frac{\tau^2}{2}\right)$$

• Then it is easy to show that

$$Y_k \mid (I_k = 1) \sim \mathcal{N}\left(\theta + \xi \sigma^2, \sigma^2\right),$$

so sample mean will be biased and inconsistent for $\boldsymbol{\theta}$

- Simulated data from Fuller (2009, Ex. 6.3.1) following Korn and Graubard (1999, Ex. 4.3-1) for 1988 National Maternal and Infant Health Survey
- Conducted by US National Center for Health Statistics
- Goal: study factors related to poor pregnancy outcome
- Design: nationally-representative stratified sample from birth records, with oversampling of low-birthweight infants
 - complex survey: stratified, unequal-probability

- Let U =all US live births in 1988
- Let $Y_k = gestational age$, strongly related to birthweight
- Suppose Y_k iid $\mathcal{N}(heta,\sigma^2)$
- Inclusion probability in NMIHS depends on birthweight, hence Y_k is predictive:

$$\mathbb{E}\left[\Pi_k \mid Y_k = y_k\right] = \exp\left(\xi_0 - 0.175y_k + \frac{\tau^2}{2}\right)$$

ullet Greater gestational age \Rightarrow less likely to be sampled

• By previous computation, negative bias in the unweighted sample mean:

$$Y_k \mid (I_k = 1) \sim \mathcal{N}\left(\theta - 0.175\sigma^2, \sigma^2\right),$$

- Here we used classical design-based techniques to deal with effects of selection

• Provided $\pi_k > 0$ for all $k \in U$ plus additional mild conditions,

$$\widehat{\theta}_{\mathrm{HT}} = \frac{1}{N} \sum_{k \in U} y_k \frac{I_k}{\pi_k}$$

is unbiased and consistent for finite-population average:

$$\mathbb{E}\left[\frac{1}{N}\sum_{k\in U}y_k\frac{I_k}{\pi_k} \middle| \ \boldsymbol{\pi}_U, \boldsymbol{y}_U\right] = \frac{1}{N}\sum_{k\in U}y_k = \theta_N$$

• Consistency for θ then follows by chaining argument:

$$\widehat{\theta}_{\mathrm{HT}} - \theta = \left(\widehat{\theta}_{\mathrm{HT}} - \theta_N\right) + (\theta_N - \theta) = \mathsf{small} + \mathsf{smaller}$$

• If finite population parameter can be written explicitly as

$$\theta_N = \vartheta \left(\sum_{k \in U} y_k^{(1)}, \dots, \sum_{k \in U} y_k^{(p)} \right)$$

for some smooth map $\vartheta(\cdot)$, then

$$\widehat{\theta}_{\mathrm{HT}} = \vartheta \left(\sum_{k \in U} y_k^{(1)} \frac{I_k}{\pi_k}, \dots, \sum_{k \in U} y_k^{(p)} \frac{I_k}{\pi_k} \right)$$

is consistent and asymptotically design-unbiased for $heta_N$

• If a finite population parameter can be written as solution to a population-level estimating equation,

$$heta_N ext{ solves } \mathbf{0} = oldsymbol{arphi} \left(\sum_{k \in U} y_k^{(1)}, \dots, \sum_{k \in U} y_k^{(p)}; heta
ight),$$

then HT plug-in estimator is obtained by solving weighted sample-level estimating equation:

$$\widehat{\theta}_{\mathrm{HT}} \text{ solves } \mathbf{0} = \boldsymbol{\varphi} \left(\sum_{k \in U} y_k^{(1)} \frac{I_k}{\pi_k}, \dots, \sum_{k \in U} y_k^{(p)} \frac{I_k}{\pi_k}; \theta \right)$$

• If estimating equation uses the population-level score,

$$\mathbf{0} = \frac{\partial}{\partial \theta} \sum_{k \in U} \ln f(y_k; \theta) \bigg|_{\theta = \theta_N},$$

then θ_N are population-level MLE's

• If it uses the weighted sample-level score,

$$\mathbf{0} = \frac{\partial}{\partial \theta} \sum_{k \in U} \ln f(y_k; \theta) \frac{I_k}{\pi_k} \bigg|_{\theta = \widehat{\theta}_{\mathrm{HT}}},$$

then $\widehat{ heta}_{\mathrm{HT}}$ are maximum pseudo-likelihood estimators

- Combining plug-in and chaining argument:
 - -Link 1: for the superpopulation model parameter θ , define a corresponding finite population parameter θ_N -Link 2: estimate θ_N by $\hat{\theta}_{\rm HT}$ using HT plug-in principle
- Typically,

$$\widehat{\theta}_{\mathrm{HT}} - \theta = \left(\widehat{\theta}_{\mathrm{HT}} - \theta_N\right) + \left(\theta_N - \theta\right) = O_p\left(n^{-\alpha}\right) + O_p\left(N^{-\alpha}\right)$$

where $n \ll N$, so ignore the second component

• Use design-based methods to estimate the variance of the first component, ignoring the second

- **Default Option:** Assume informative selection
 - use HT plug-in and chaining
 - simple and readily available in software
 - design-based option is not usually the most efficient
- Other Options: Test for informative selection
 - if no evidence of selection effects, proceed with fullyefficient likelihood-based methods
 - if evidence of selection effects, proceed with likelihoodbased procedures that account for effects of selection

- **Pseudo-likelihood:** easy but least efficient
- Full likelihood: most efficient, often impractical
 - in general, joint distribution of all observed Y_k, I_k, Π_k - with no selection, joint distribution of Y_k only
- Sample likelihood: treat $\{Y_k\}_{k \in s}$ as if they were independently distributed with marginal pdf

$$f(y \mid I_k = 1) = \frac{\mu(y;\xi)}{\int \mu(y;\xi)f(y) \, dy} f(y)$$

• The typical efficiency ordering:

Pseudo < Sample < Full

- Sample likelihood has long history:
 - Patil and Rao (1978), Breslow and Cain (1988), Krieger and Pfeffermann (1992), Pf., Krieger and Rinott (1998), Pf. and Sverchkov (2009)
- But theoretical foundation has been less developed:
 - assuming n fixed as $N\to\infty,$ PKR (1998) show pointwise convergence of joint pdf of responses to product of $f(y_k \mid I_k = 1)$
- Want theoretical results that account for dependence induced by design

- Bonnéry, Breidt, Coquet (2018, *Bernoulli*):
 - assume $\sqrt{n}\text{-}\mathrm{consistent}$ and asymptotically normal sequence of estimators of nuisance parameters ξ
 - often attainable via design-based regression: $\widehat{\xi}_{\text{HT}}$ - plug in $\widehat{\xi}_{\text{HT}}$ to product of $f(y_k \mid I_k = 1; \theta)$:

$$\prod_{k \in s} \frac{\mu(y_k; \widehat{\xi}_{\mathrm{HT}})}{\int \mu(y; \widehat{\xi}_{\mathrm{HT}}) f(y; \theta) \, dy} f(y_k; \theta)$$

– maximize with respect to heta to get $\widehat{ heta}_{\mathrm{SMLE}}$

Our contribution to sample likelihood estimation, II 23

- Consistency and asymptotic normality of $\hat{\theta}_{\mathrm{SMLE}}$
 - assumptions are verifiable for some realistic designs
 - asymptotic approximations work well in simulations
- Asymptotic covariance matrix depends on
 - joint covariance matrix of score vector and $\widehat{\xi}_{\rm HT}$, estimated via design-based methods
 - information matrix for θ , estimated via model-based methods (plug SMLEs into analytic derivation)
- Design-based regression problem followed by classical likelihood problem

• Approach 1: Test for dependence on y_k of

$$\mathbb{E}\left[\Pi_k \mid Y_k = y_k\right] = \mu(y_k;\xi)$$

- this is a regression specification test

- parametric or nonparametric

- Approach 2: Test for a difference between designweighted and unweighted ...
 - -... parameter estimates
 - $-\dots$ probability density function estimates
 - $-\ldots$ cumulative distribution function estimates

- Design-weighted corrects for ρ and targets f (perhaps inefficiently)
- \bullet Unweighted does not correct for ρ and targets ρf
- \bullet Difference between weighted and unweighted indicates $\rho \not\equiv 1,$ so selection is informative

• Consider the normal linear model with x_k and x_k -bydesign weight interactions (including intercept-by-weight):

$$oldsymbol{Y}_{s} = \left[oldsymbol{x}_{k}^{\prime} \ rac{1}{\pi_{k}} oldsymbol{x}_{k}^{\prime}
ight] \left[egin{array}{c} heta \ oldsymbol{\gamma} \end{array}
ight] + oldsymbol{arepsilon}_{s}, \quad oldsymbol{arepsilon}_{s} \sim \mathcal{N}\left(oldsymbol{0}, \sigma^{2}I
ight)$$

where $[oldsymbol{x}'_k]_{k\in s}$ is full-rank

- Algebraically, $\mathbb{E}\left[\widehat{\theta}\right] = \mathbb{E}\left[\widehat{ heta}_{\mathrm{HT}}\right] \Leftrightarrow \boldsymbol{\gamma} = \boldsymbol{0}$
- Test $H_0: \gamma = 0$ versus $H_a: \gamma \neq 0$ via the usual F-test

- DuMouchel and Duncan 1983; Fuller 1984

F-Test for gestational age example

- Full/alternative model: $Y_k \sim \mathcal{N}\left(\theta + \gamma(\pi_k^{-1}), \sigma^2\right)$
- Reduced/null model: $Y_k \sim \mathcal{N}\left(\theta, \sigma^2\right)$
- Test null hypothesis of non-informative selection:

```
> fit.full <- lm(GestAge ~ weight, data = birth)
> fit.reduced <- lm(GestAge ~ 1, data = birth)
> anova(fit.reduced, fit.full)
Analysis of Variance Table
```

Model 1: GestAge ~ 1 Model 2: GestAge ~ weight Res.Df RSS Df Sum of Sq F Pr(>F) 1 89 1505.04 2 88 256.35 1 1248.7 428.66 < 2.2e-16 ***

Wald test based on difference in parameter estimates 28

• More generally, Pfeffermann (1993) derived the Waldtype test statistic,

$$W_N = \left(\widehat{\theta}_{\rm HT} - \widehat{\theta}\right)' \left\{ -\widehat{J}^{-1} + \widehat{J}_{\rm HT}^{-1}\widehat{K}_{\rm HT}\widehat{J}_{\rm HT}^{-1} \right\}^{-1} \left(\widehat{\theta}_{\rm HT} - \widehat{\theta}\right)$$

where \boldsymbol{J} and \boldsymbol{K} matrices depend on

$$\pi_k^{-1}, \ \mathrm{Var}\left(\frac{\partial \log f(y_k \mid \theta)}{\partial \theta}\right), \ \frac{\partial^2 \log f(y_k \mid \theta)}{\partial \theta \, \partial \theta'}$$

• Under the null hypothesis $\mathbb{E}\left[\widehat{\theta}_{\mathrm{HT}} - \widehat{\theta}\right] = \mathbf{0}$, W_N converges in distribution to a chi-squared distribution with degrees of freedom equal to $\dim(\theta)$

- Wald test requires considerable derivation
- Alternative test does not compare parameter estimates directly, but evaluates their likelihood ratio
 - unweighted log-likelihood ratio:

$$LR = 2\left\{ \ln \mathcal{L}(\widehat{\theta}) - \ln \mathcal{L}(\widehat{\theta}_{HT}) \right\}$$

- weighted (pseudo) log-likelihood ratio:

$$LR_{HT} = 2\left\{ \ln \mathcal{L}_{HT}(\widehat{\theta}_{HT}) - \ln \mathcal{L}_{HT}(\widehat{\theta}) \right\}$$

 (W. Herndon, 2014 CSU dissertation advised by Breidt and Opsomer, and joint with R. Cao and M. Francisco-Fernández) \bullet Under H_0 : non-informativeness, the LR test statistics converge,

$$\operatorname{LR} \xrightarrow{d} \sum_{i=1}^{p} \lambda_i Z_i^2, \quad \operatorname{LR}_{\operatorname{HT}} \xrightarrow{d} \sum_{i=1}^{p} \lambda_{\operatorname{HT},i} Z_i^2$$

where Z_i iid $\mathcal{N}(0,1)$ and λ_i , $\lambda_{\mathrm{HT},i}$ are eigenvalues of matrices involving

$$\pi_k^{-1}, \; \mathsf{Var}\left(\frac{\partial \log f(y_k \mid \theta)}{\partial \theta}\right), \; \frac{\partial^2 \log f(y_k \mid \theta)}{\partial \theta \, \partial \theta'}$$

• Seems as bad as Wald, but ...

- Parametric bootstrap version of LR test statistic:
 - $-\operatorname{draw}$ bootstrap sample from fitted density and construct LR test statistic B times
 - -bootstrap p-value= $B^{-1} \sum_{b=1}^{B} \mathbb{1}\{LR^{(b)} > LR\}$
 - simple to implement: no information computations
- \bullet Both the linear combination of χ_1^2 's and the bootstrap version work well in simulations
 - correct size under H_0
 - $-\operatorname{good}$ power for a range of informative designs

- Nonparametric density estimation and testing
 - alternatives to "classic" design-weighted KDE
 - compare design-weighted KDE to unweighted KDE for testing?
- Nonparametric CDF estimation and testing
 - brief review of CDF estimation under informative selection
 - tests comparing design-weighted empirical CDF to unweighted CDF

- Bonnéry, Breidt, Coquet (2017, Metron)
- Under standard assumptions, unweighted KDE

$$\frac{1}{n}\sum_{k\in s}\frac{1}{h}K\left(\frac{y_k-y}{h}\right)$$

with kernel K, bandwidth h converges not to $f(\boldsymbol{y}),$ but

$$\frac{\mu(y;\xi)}{\int \mu(y;\xi)f(y)\,dy}f(y) = \rho(y;\xi)f(y)$$

- usual $O(h^2)$ rate for bias, in estimation of ρf - "usual" $O\left((Nh\int \mu f)^{-1}\right)$ variance • Unweighted KDE converges to

$$\frac{\mu(y;\xi)}{\int \mu(y;\xi)f(y)\,dy}f(y) = \rho(y;\xi)f(y)$$

- "Outer adjustment": use unweighted KDE
 - estimate and remove ρ
 - or estimate and remove μ and $\int \mu f$
- "Inner adjustment": use weighted KDE
 - weights from inclusion probabilities regressed on y- or from design weights regressed on y

• "Outer adjustment": Estimating μ and $\int \mu f$ via design-weighted nonparametric regression leads to

$$\frac{1}{\sum_{k \in s} \pi_k^{-1}} \sum_{k \in s} \frac{1}{h} K\left(\frac{y_k - y}{h}\right) \frac{1}{\pi_k}$$

- But this is just "Inner adjustment" using the original design weights
- This standard, design-weighted KDE is the baseline for comparison

• n = 90, 1000 reps with 5-per-stratum in 18 strata

	$\mathbb{E}\left[\Pi \mid Y = y\right]$	IMSE	$\mathbb{E}\left[\Pi^{-1} \mid Y = y\right]$	IMSE
	$=\mu(y;\xi)$	Ratio	$= \omega(y; \vec{\delta})$	Ratio
	μ, ξ known	1.5		
Outer	ξ unknown	1.7		—
	misspecified μ	1.6	misspecified ω	1.6
	kernel reg.	1.0	kernel reg.	0.96
	μ, ξ known	0.9		
Inner	ξ unknown	0.96		—
	misspecified μ	0.94	misspecified ω	0.93
	kernel reg.	1.4	kernel reg.	1.4

- KDE summary:
 - nonparametric outer adjustment works well
 - parametric inner adjustment works slightly better
- \bullet Design-weighted or adjusted KDE converges to f
- \bullet Unweighted KDE converges to ρf
- At a minimum, this is an exploratory tool that may suggest informativeness
- Formal testing is a subject of future work

- Bonnéry, Breidt, Coquet (2012, Bernoulli)
- Under mild conditions, the (unweighted) empirical CDF

$$\widehat{F}(\alpha) = \frac{\sum_{k \in U} \mathbb{1}_{(-\infty,\alpha]}(Y_k) I_k}{\mathbb{1} (I_U = \mathbf{0}) + \sum_{k \in U} I_k}$$

converges uniformly in L_2 :

$$\sup_{\alpha \in \mathbb{R}} \left| \widehat{F}(\alpha) - F_{\rho}(\alpha) \right| = \|\widehat{F} - F_{\rho}\|_{\infty} \xrightarrow[N \to \infty]{L_2} 0$$

where the limit CDF is distorted by selection:

$$F_{\rho}(\alpha) = \frac{\int_{-\infty}^{\alpha} \mu(y;\xi) f(y) \, dy}{\int \mu(y;\xi) f(y) \, dy} = \int_{-\infty}^{\alpha} \rho(y;\xi) f(y) \, dy$$

• Looks like informative selection: can we test?

Unweighted and Weighted CDF's

Gestational Age (weeks)

• Functional CLT for independent empirical CDFs:

$$D_n(\alpha) = \frac{\sqrt{n}}{2} \left\{ F_n^{(1)}(\alpha) - F_n^{(2)}(\alpha) \right\}$$

converges in distribution to a **Brownian bridge**: zeromean Gaussian process \mathbb{G}_F with covariance function $\mathbb{E}\left[\mathbb{G}_F(s)\mathbb{G}_F(t)\right] = F(s \wedge t) - F(s)F(t)$

- Kolmogorov–Smirnov two-sample test: $||D_n(\alpha)||_{\infty}$
- Cramér–von Mises two-sample test: $\int_{-\infty}^{\infty} D_n^2(\alpha) dF_n(\alpha)$, with $F_n = \psi F_n^{(1)} + (1 - \psi) F_n^{(2)}$ for some $\psi \in [0, 1]$

 Boistard, Lopuhaä, and Ruiz-Gazen (2017) develop functional CLT for

$$\sqrt{n} \left\{ \frac{\sum_{k \in U} \mathbb{1}(Y_k \le \alpha) I_k \pi_k^{-1}}{\widehat{N}} - F(\alpha) \right\}$$

via assumptions on

- CLT for HT, to get finite dimensional distributions
 higher-order inclusion probabilities, to get tightness
- Adapt and extend to weighted minus unweighted CDF:

$$T_{N}(\alpha) = \sqrt{n} \left\{ \frac{\sum_{k \in U} \mathbb{1}(Y_{k} \leq \alpha) I_{k} \pi_{k}^{-1}}{\widehat{N}_{\mathrm{HT}}} - \frac{\sum_{k \in U} \mathbb{1}(Y_{k} \leq \alpha) I_{k}}{n} \right\}$$

(Teng Liu, CSU PhD, 2019)

• **Result:** Under the null of no informative selection, $T_N(\alpha)$ converges in distribution to a scaled Brownian bridge: zero-mean Gaussian process \mathbb{G}_F with covariance function

$$\mathbb{E}\left[\mathbb{G}_{F}(s)\mathbb{G}_{F}(t)\right] = C\left\{F(s \wedge t) - F(s)F(t)\right\}$$

where

$$C = \lim_{N \to \infty} \frac{n}{N^2} \sum_{k \in U} \mathbb{E} \left[\frac{1}{\Pi_k} \left(1 - \frac{N \Pi_k}{n} \right)^2 \right]$$

• Estimate the scaling factor

$$C = \lim_{N \to \infty} \frac{n}{N^2} \sum_{k \in U} \mathbb{E} \left[\frac{1}{\Pi_k} \left(1 - \frac{N \Pi_k}{n} \right)^2 \right]$$

using design-based methods:

$$\widehat{C}_{\mathrm{HT}} = \frac{n}{\widehat{N}_{\mathrm{HT}}^2} \sum_{k \in U} \frac{I_k}{\pi_k^2} \left(1 - \frac{\widehat{N}_{\mathrm{HT}} \pi_k}{n} \right)^2$$

• Under probability-proportional-to-size sampling, the scale factor simplifies further: with $w_k = \pi_k^{-1}$,

$$\widehat{C}_{\text{pps}} = (S_w/\bar{w})^2 (n-1)/n \simeq (CV_w)^2$$

- Kolmogorov–Smirnov test of informative selection: $\widehat{C}^{-1/2}\|T_n(\alpha)\|_{\infty}$
- Cramér–von Mises test of informative selection:

$$\widehat{C}^{-1} \int_{-\infty}^{\infty} T_n^2(\alpha) \, dH(\alpha),$$

with $H = \psi \widehat{F}_{\mathrm{HT}} + (1 - \psi) \widehat{F}$ for some $\psi \in [0, 1]$

• Asymptotic distribution and empirical distribution of K–S and C–vM, with n = 300 and 1000 reps

- Empirical $\xi = 0.175$ in $Y_k \mid (I_k = 1) \sim \mathcal{N} \left(\theta \xi \sigma^2, \sigma^2 \right)$
- Choose grid of $\xi \in [0, 0.03]$; use n = 300 and 1000 reps each

• Suppose Y_k are iid location-scale t_{ν} :

$$Y_k = \theta + \sigma \frac{Z_k}{\sqrt{V_k/\nu}} \sqrt{\frac{\nu - 2}{\nu}} = \theta + \sigma_k Z_k,$$

 $\{Z_k\}$ iid $\mathcal{N}(0,1)$ independent of $\{V_k\}$ iid χ^2_{ν}

• Informative Poisson sampling with $\pi_k \propto \sigma_k$

- minimizes design-model variance of HT estimator

• $\sigma_k \rightarrow \sigma$ as $\nu \rightarrow \infty$, and informativeness disappears

• Asymptotic distribution and empirical distribution of K–S and C–vM, with n = 300 and 1000 reps

- Choose $\nu = 2^2, 2^3, \ldots, 2^9$; use n = 300 and 1000 reps each
- DD test gets some "lucky" power at low df due to random variation

- Weighted and unweighted estimators have the same mean
- At very low degrees of freedom, HT is (particularly) highly variable
- Difference between weighted and unweighted is large due to chance variation
- DD correctly rejects by incorrectly assuming large difference is a difference in the mean

- Informative selection is pervasive
- Strategy of comparing weighted to unweighted works broadly:
 - parametric, from linear models to likelihood ratios
 - nonparametric, from kernel density estimation to classic two-sample tests
- Design-weighted estimation is a "safe" and readily-available solution
- Sample likelihood approach is a viable alternative

- Thank you for your attention
- Thanks to Matthieu, Guillaume, and Yves for a wonderful conference!