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Where DPPs come from
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Non-interacting particles (�perfect gas�, a.k.a. IID sampling)
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Fermions (Fermion point process, Macchi, 1976)



Variance reduction in importance sampling

I Many Monte Carlo methods try to achieve variance reduction
by enforcing diversity in the samples

I Determinantal Point Processes provide a generic way of
producing diverse subsets (Kulesza and Taskar, 2012)

I They have the advantage of tractability (compared to other
point processes with repulsion).

I I will introduce DPPs brie�y

I I will show applications to graph sampling and coresets

I Pointers to theoretical work at the end + challenges



Assumptions

I We have n items, of which we wish to retain k .

I We have a way of quantifying the similarity between items xi
and xj via a kernel function

I I will start with items that are just points in R2



Our set
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How to enforce diversity: step (1), de�ne similarity

I We need to pick a function that encodes similarity between
individuals

I Use any old kernel function you like, e.g.:

k(xi , xj) = exp

(
− 1
2l2
||xi − xj ||2

)
I Similarity is high whenever xi is close to xj



Similarity
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Similarity
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How to enforce diversity: step (2), form a matrix

I We encode all pairwise similarities in the set as a matrix, L

I Lij = k(xi , xj)

I If we have a subset X , the similarities in the subset are
encoded in the matrix LX , a minor of L

I All matrices LX are positive de�nite.



L-matrices
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How to enforce diversity: step (3), penalise redundancy

I The �nal step is to de�ne a probability distribution that
penalises redundant sets

I In DPPs, we take:
p(X ) ∝ det(LX )

I Sets that contain a lot of similar points will have low det(LX ),
and thus a low probability of being picked.



Why does the determinant work?
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Determinant: 0.51.



Why does the determinant work?
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Sampling from a DPP
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Sampling from a DPP
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Sampling from a DPP
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Sampling from a DPP
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Sampling from a DPP
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Sampling from a DPP
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How to sample from a DPP?

I There's a very simple Gibbs sampler (Li et al., 2016)

I Otherwise: for exact sampling, you need the
eigendecomposition of a n × n matrix (O(n3) cost. Can be
reduced to �nding O(k) top eigenvectors, at O(nk2) cost.

I Then the sampling algorithm runs in O(nk2) (don't use the
one in Kulesza and Taskar (2012), it's outdated, see e.g.
Tremblay et al. (2017b); Barthelmé et al. (2018))



In what sense are DPPs tractable?

I It's rare to see a point process that has all of following:
1. Joint density is tractable
2. Inclusion probabilities are tractable, i.e. you can compute the

prob. that item i is in the random set X , or that i , j are jointly
in X , etc.

3. Sampling is tractable

I DPPs have all three features (with caveats), meaning you can
actually prove stu�

I (doesn't mean they're always the best point process!)



Subsampling a graph

�Highschool graph� (Coleman, 1964)



Subsampling a graph

I Tremblay et al. (2017a,b): consider a graph with n nodes

I Each node has xi an associated signal yi
I Goal: measure f on a limited subset of nodes, such as to

reconstruct the signal y on the missing nodes

I The signal is assumed to be smooth over the graph



Smooth signal on a graph

I A smooth signal on a graph roughly means that neighbouring
nodes are likely to have similar values

I In the �eld of graph signal processing, the notion is made
precise via the graph Laplacian

y =
m∑
j=1

αjuj

I Signal lies in the span of the �rst m eigenvectors of the graph
Laplacian u1, . . . ,um

I If graph is a grid, same thing as a band-limited signal in the
traditional sense

I If graph has m separate communities, value is constant within
a community.



Eigenvectors of the graph Laplacian



Eigenvectors of the graph Laplacian



Eigenvectors of the graph Laplacian



Eigenvectors of the graph Laplacian



Random signals



Random signals



Random signals



Random signals



Using a DPP to sample nodes in a graph

I We can use the following kernel for a DPP:

L = UUt

I Here U contains the �rst m eigenvectors of the graph

I Guarantees perfect reconstruction, because UX ,: is invertible
(otherwise the determinant of UX ,:U

t
:,X would be 0).



DPP samples



DPP samples
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DPP samples



A large-scale example

Stanford bunny (mesh with 30k vertices).



A large-scale example

Stanford bunny (mesh with 30k vertices).
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A large-scale example

Stanford bunny (mesh with 30k vertices).
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A large-scale example

Stanford bunny (mesh with 30k vertices).



Practical considerations

I In practice the cost is often too high on large graphs, due to
the eigendecomposition

I In Tremblay et al. (2017) we give an approximate algorithm
that uses powers of the adjacency matrix

I See paper for details



Building coresets

I Here we are in a machine learning setting, and the goal is to
�nd the minimum of a cost function:

C (θ) =
n∑

i=1

f (xi , θ)

I i sums over data-points

I We seek argminC (θ), but minimisation is expensive (because
n is very large)



Building coresets

I �Coresets� retain a weighted subset of the datapoints, to
create an approximate cost function:

C̃ (θ) =
∑
j∈X

wj f (xj , θ)

I Minimisation is cheaper!

I Requirement: for all θ ∈ Θ∣∣∣∣∣ C̃ (θ)

C (θ)
− 1

∣∣∣∣∣ ≤ ε
with high prob.

I Finding a procedure that outputs coresets is problem-speci�c!



Building coresets

I Many algorithms for building coresets proceed in this fashion
(Munteanu and Schwiegelshohn, 2017):
1. Do a �rst pass over data, computing a heuristic that gives

each item a certain priority (optimal strategy is to give high
priority to �unusual� - high leverage - items)

2. Sample k items independently, with higher probability for
high-priority items

3. Set wi = p−1

i
, i.e. importance sampling.

I Tremblay et al. (2018): simply replace independent samples
with samples from a DPP

I Can prove that resulting random sets have the coreset property
with high probability, theoretical arguments suggest that
performance should improve (practical experiments show it
does).



Challenges & questions

I I glossed over the fact that standard DPPs produce sets of
random, not �xed size.

I Fixed size: so-called �k-DPPs� (Kulesza & Taskar, 2011) are
less tractable (inclusion probabilities are harder).

I In recent work we show asymptotic equivalence of �xed-size
and varying size DPPs (Barthelmé et al., 2018) which is good
news

I However problems remain:
I Hyperparameters (in the kernel function)
I Speeding up sampling
I Behaviour in high dimensions



Conclusion

I DPPs are an interesting class of tools for sampling

I As far as point processes go, they are fairly tractable

I They have fascinating links to Gaussian Processes, random
matrix theory, graph theory, optimal design theory, stat.
physics

I I've shown applications to graphs and coresets, but there are
many more

I Some theoretical challenges remain



Post-doc position

I Post-doc position available in Grenoble, working with Ronald
Phlypo & myself.

I Topic is Gaussian processes on graphs, come see me!
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