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Where DPPs come from

Non-interacting particles (“perfect gas”, a.k.a. 11D sampling)



Where DPPs come from

Fermions (Fermion point process, Macchi, 1976)



Variance reduction in importance sampling

» Many Monte Carlo methods try to achieve variance reduction
by enforcing diversity in the samples

» Determinantal Point Processes provide a generic way of
producing diverse subsets (Kulesza and Taskar, 2012)

» They have the advantage of tractability (compared to other
point processes with repulsion).

» | will introduce DPPs briefly

I will show applications to graph sampling and coresets

v

> Pointers to theoretical work at the end + challenges



Assumptions

» \We have n items, of which we wish to retain k.

> We have a way of quantifying the similarity between items x;
and x; via a kernel function

» | will start with items that are just points in R?
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How to enforce diversity: step (1), define similarity

> \We need to pick a function that encodes similarity between
individuals

» Use any old kernel function you like, e.g.:

1
k(xi,xj) = exp (—leHx; — XJ'H2>

» Similarity is high whenever x; is close to x;
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How to enforce diversity: step (2), form a matrix

» We encode all pairwise similarities in the set as a matrix, L

> L,:,' = k(X,‘,XJ')

» If we have a subset X, the similarities in the subset are
encoded in the matrix Ly, a minor of L

» All matrices Ly are positive definite.



L-matrices
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How to enforce diversity: step (3), penalise redundancy

» The final step is to define a probability distribution that
penalises redundant sets
» In DPPs, we take:
p(X) o< det(Ly)

> Sets that contain a lot of similar points will have low det(Ly),
and thus a low probability of being picked.



Why does the determinant work?

S , 46 77 188
R LA 46 1.00 0.01 0.70
* o 188 3 77 0.01 1.00 0.06

T - 188 0.70 0.06 1.00

;, | 7-7 Determinant: 0.51.




Why does the determinant work?

N . ’ , 67 178 125
i s " & v 67 1.00 0.95 0.89
o] p2o3 0 178 0.95 1.00 0.97

o 125 0.89 0.97 1.00

(;, 1 Determinant: 0.005.
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Independent samples
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Independent samples
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Independent samples
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Independent samples
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Independent samples
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How to sample from a DPP?

» There's a very simple Gibbs sampler (Li et al., 2016)

» Otherwise: for exact sampling, you need the
eigendecomposition of a n x n matrix (O(n®) cost. Can be
reduced to finding O(k) top eigenvectors, at O(nk?) cost.

» Then the sampling algorithm runs in O(nk?) (don't use the

one in Kulesza and Taskar (2012), it's outdated, see e.g.
Tremblay et al. (2017b); Barthelmé et al. (2018))



In what sense are DPPs tractable?

> It's rare to see a point process that has all of following:
1. Joint density is tractable
2. Inclusion probabilities are tractable, i.e. you can compute the
prob. that item / is in the random set X, or that i, are jointly
in X, etc.
3. Sampling is tractable

» DPPs have all three features (with caveats), meaning you can
actually prove stuff

» (doesn’'t mean they're always the best point process!)



Subsampling a graph
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“Highschool graph” (Coleman, 1964)



Subsampling a graph

» Tremblay et al. (2017a,b): consider a graph with n nodes
» Each node has x; an associated signal y;

» Goal: measure f on a limited subset of nodes, such as to
reconstruct the signal y on the missing nodes

» The signal is assumed to be smooth over the graph



Smooth signal on a graph

» A smooth signal on a graph roughly means that neighbouring
nodes are likely to have similar values

» In the field of graph signal processing, the notion is made
precise via the graph Laplacian

m
y=) oy
j=1

» Signal lies in the span of the first m eigenvectors of the graph
Laplacian uy,...,up,

» If graph is a grid, same thing as a band-limited signal in the
traditional sense

> If graph has m separate communities, value is constant within
a community.



Eigenvectors of the graph Laplacian
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Eigenvectors of the graph Laplacian
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Eigenvectors of the graph Laplacian



Eigenvectors of the graph Laplacian
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Using a DPP to sample nodes in a graph

» We can use the following kernel for a DPP:
L =UuU’

» Here U contains the first m eigenvectors of the graph

» Guarantees perfect reconstruction, because Uy . is invertible
(otherwise the determinant of Uy .U, would be 0).



DPP samples
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DPP samples
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A large-scale example

Stanford bunny (mesh with 30k vertices).
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A large-scale example

Stanford bunny (mesh with 30k vertices).



Practical considerations

» In practice the cost is often too high on large graphs, due to
the eigendecomposition

» In Tremblay et al. (2017) we give an approximate algorithm
that uses powers of the adjacency matrix

» See paper for details



Building coresets

» Here we are in a machine learning setting, and the goal is to
find the minimum of a cost function:

C(0) =>_ f(x,0)
i=1

» / sums over data-points

» We seek argmin C(#), but minimisation is expensive (because
n is very large)



Building coresets

> “Coresets” retain a weighted subset of the datapoints, to
create an approximate cost function:

E(0) = " wif (x.0)
Jjex
» Minimisation is cheaper!
» Requirement: for all 6 € ©
C(9)

=2

40 s ¢

with high prob.

» Finding a procedure that outputs coresets is problem-specific!



Building coresets

» Many algorithms for building coresets proceed in this fashion
(Munteanu and Schwiegelshohn, 2017):

1. Do a first pass over data, computing a heuristic that gives
each item a certain priority (optimal strategy is to give high
priority to “unusual” - high leverage - items)

2. Sample k items independently, with higher probability for
high-priority items

3. Set w; = plfl, i.e. importance sampling.

» Tremblay et al. (2018): simply replace independent samples
with samples from a DPP

» Can prove that resulting random sets have the coreset property
with high probability, theoretical arguments suggest that
performance should improve (practical experiments show it
does).



Challenges & questions

>

>

>

| glossed over the fact that standard DPPs produce sets of
random, not fixed size.

Fixed size: so-called “k-DPPs” (Kulesza & Taskar, 2011) are
less tractable (inclusion probabilities are harder).

In recent work we show asymptotic equivalence of fixed-size
and varying size DPPs (Barthelmé et al., 2018) which is good
news

However problems remain:

» Hyperparameters (in the kernel function)
» Speeding up sampling
» Behaviour in high dimensions



Conclusion

v

DPPs are an interesting class of tools for sampling
As far as point processes go, they are fairly tractable

They have fascinating links to Gaussian Processes, random
matrix theory, graph theory, optimal design theory, stat.
physics

I've shown applications to graphs and coresets, but there are
many more

Some theoretical challenges remain



Post-doc position

» Post-doc position available in Grenoble, working with Ronald
Phlypo & myself.

> Topic is Gaussian processes on graphs, come see mel!



References

Barthelmé, S., Amblard, P.-O., and Tremblay, N. (2018).
Asymptotic equivalence of fixed-size and varying-size
determinantal point processes. arXiv preprint arXiv:1803.01576.

Kulesza, A. and Taskar, B. (2012). Determinantal point processes
for machine learning. Foundations and Trends in Machine
Learning, 5(2-3):123-286.

Li, C., Jegelka, S., and Sra, S. (2016). Efficient Sampling for
k-Determinantal Point Processes.

Munteanu, A. and Schwiegelshohn, C. (2017). Coresets-Methods
and History: A Theoreticians Design Pattern for Approximation
and Streaming Algorithms. K/ - KAEnstliche Intelligenz.

Tremblay, N., Amblard, P.-O., and Barthelme, S. (2017a). Graph
sampling with determinantal processes. working paper or preprint.

Tremblay, N., Barthelme, S., and Amblard, P.-O. (2017b).
Echantillonnage de signaux sur graphes via des processus
déterminantaux. In GRETSI, Juan-les-Pins, France.



	References

