Sub-sampling using Determinantal Point Processes

Simon Barthelme, Pierre-Olivier Amblard, Nicolas Tremblay. Gipsa-lab, CNRS

20th August 2018

Where DPPs come from

Non-interacting particles ("perfect gas", a.k.a. IID sampling)

Where DPPs come from

Fermions (Fermion point process, Macchi, 1976)

Variance reduction in importance sampling

- Many Monte Carlo methods try to achieve variance reduction by enforcing diversity in the samples
- Determinantal Point Processes provide a generic way of producing diverse subsets (Kulesza and Taskar, 2012)
- They have the advantage of tractability (compared to other point processes with repulsion).
- I will introduce DPPs briefly
- I will show applications to graph sampling and coresets
- Pointers to theoretical work at the end + challenges

Assumptions

- We have n items, of which we wish to retain k.
- We have a way of quantifying the similarity between items x_{i} and x_{j} via a kernel function
- I will start with items that are just points in \mathbb{R}^{2}

Our set

Our set

How to enforce diversity: step (1), define similarity

- We need to pick a function that encodes similarity between individuals
- Use any old kernel function you like, e.g.:

$$
k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\exp \left(-\frac{1}{2 /^{2}}\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|^{2}\right)
$$

- Similarity is high whenever x_{i} is close to x_{j}

Similarity

Similarity

How to enforce diversity: step (2), form a matrix

- We encode all pairwise similarities in the set as a matrix, \mathbf{L}
- $\mathbf{L}_{i j}=k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)$
- If we have a subset \mathcal{X}, the similarities in the subset are encoded in the matrix $\mathrm{L}_{\mathcal{X}}$, a minor of L
- All matrices $\mathbf{L}_{\mathcal{X}}$ are positive definite.

L-matrices

	46	77	188
46	1.00	0.01	0.70
77	0.01	1.00	0.06
188	0.70	0.06	1.00

How to enforce diversity: step (3), penalise redundancy

- The final step is to define a probability distribution that penalises redundant sets
- In DPPs, we take:

$$
p(\mathcal{X}) \propto \operatorname{det}\left(\mathbf{L}_{\mathcal{X}}\right)
$$

- Sets that contain a lot of similar points will have low $\operatorname{det}\left(\mathrm{L}_{\mathcal{X}}\right)$, and thus a low probability of being picked.

Why does the determinant work?

	46	77	188
46	1.00	0.01	0.70
77	0.01	1.00	0.06
188	0.70	0.06	1.00

Determinant: 0.51.

Why does the determinant work?

	67	178	125
67	1.00	0.95	0.89
178	0.95	1.00	0.97
125	0.89	0.97	1.00

Determinant: 0.005 .

Sampling from a DPP

Independent samples

How to sample from a DPP?

- There's a very simple Gibbs sampler (Li et al., 2016)
- Otherwise: for exact sampling, you need the eigendecomposition of a $n \times n$ matrix $\left(\mathcal{O}\left(n^{3}\right)\right.$ cost. Can be reduced to finding $\mathcal{O}(k)$ top eigenvectors, at $\mathcal{O}\left(n k^{2}\right)$ cost.
- Then the sampling algorithm runs in $\mathcal{O}\left(n k^{2}\right)$ (don't use the one in Kulesza and Taskar (2012), it's outdated, see e.g. Tremblay et al. (2017b); Barthelmé et al. (2018))

In what sense are DPPs tractable?

- It's rare to see a point process that has all of following:

1. Joint density is tractable
2. Inclusion probabilities are tractable, i.e. you can compute the prob. that item i is in the random set \mathcal{X}, or that i, j are jointly in \mathcal{X}, etc.
3. Sampling is tractable

- DPPs have all three features (with caveats), meaning you can actually prove stuff
- (doesn't mean they're always the best point process!)

Subsampling a graph

"Highschool graph" (Coleman, 1964)

Subsampling a graph

- Tremblay et al. (2017a,b): consider a graph with n nodes
- Each node has x_{i} an associated signal y_{i}
- Goal: measure f on a limited subset of nodes, such as to reconstruct the signal y on the missing nodes
- The signal is assumed to be smooth over the graph

Smooth signal on a graph

- A smooth signal on a graph roughly means that neighbouring nodes are likely to have similar values
- In the field of graph signal processing, the notion is made precise via the graph Laplacian

$$
\mathbf{y}=\sum_{j=1}^{m} \alpha_{j} \mathbf{u}_{j}
$$

- Signal lies in the span of the first m eigenvectors of the graph Laplacian $\mathbf{u}_{1}, \ldots, \mathbf{u}_{m}$
- If graph is a grid, same thing as a band-limited signal in the traditional sense
- If graph has m separate communities, value is constant within a community.

Eigenvectors of the graph Laplacian

Random signals

Random signals

Random signals

Random signals

Using a DPP to sample nodes in a graph

- We can use the following kernel for a DPP:

$$
\mathbf{L}=\mathbf{U} \mathbf{U}^{t}
$$

- Here \mathbf{U} contains the first m eigenvectors of the graph
- Guarantees perfect reconstruction, because $\mathbf{U}_{\mathcal{X}}$,: is invertible (otherwise the determinant of $\mathbf{U}_{\mathcal{X},:} \mathbf{U}_{:, \mathcal{X}}^{t}$ would be 0).

DPP samples

DPP samples

DPP samples

DPP samples

A large-scale example

Stanford bunny (mesh with 30k vertices).

A large-scale example

Stanford bunny (mesh with 30k vertices).

A large-scale example

Stanford bunny (mesh with 30k vertices).

A large-scale example

Stanford bunny (mesh with 30k vertices).

A large-scale example

Stanford bunny (mesh with 30k vertices).

A large-scale example

Stanford bunny (mesh with 30k vertices).

Practical considerations

- In practice the cost is often too high on large graphs, due to the eigendecomposition
- In Tremblay et al. (2017) we give an approximate algorithm that uses powers of the adjacency matrix
- See paper for details

Building coresets

- Here we are in a machine learning setting, and the goal is to find the minimum of a cost function:

$$
C(\theta)=\sum_{i=1}^{n} f\left(x_{i}, \theta\right)
$$

- i sums over data-points
- We seek argmin $C(\theta)$, but minimisation is expensive (because n is very large)

Building coresets

- "Coresets" retain a weighted subset of the datapoints, to create an approximate cost function:

$$
\tilde{C}(\theta)=\sum_{j \in \mathcal{X}} w_{j} f\left(x_{j}, \theta\right)
$$

- Minimisation is cheaper!
- Requirement: for all $\theta \in \Theta$

$$
\left|\frac{\tilde{C}(\theta)}{C(\theta)}-1\right| \leq \epsilon
$$

with high prob.

- Finding a procedure that outputs coresets is problem-specific!

Building coresets

- Many algorithms for building coresets proceed in this fashion (Munteanu and Schwiegelshohn, 2017):

1. Do a first pass over data, computing a heuristic that gives each item a certain priority (optimal strategy is to give high priority to "unusual" - high leverage - items)
2. Sample k items independently, with higher probability for high-priority items
3. Set $w_{i}=p_{i}^{-1}$, i.e. importance sampling.

- Tremblay et al. (2018): simply replace independent samples with samples from a DPP
- Can prove that resulting random sets have the coreset property with high probability, theoretical arguments suggest that performance should improve (practical experiments show it does).

Challenges \& questions

- I glossed over the fact that standard DPPs produce sets of random, not fixed size.
- Fixed size: so-called "k-DPPs" (Kulesza \& Taskar, 2011) are less tractable (inclusion probabilities are harder).
- In recent work we show asymptotic equivalence of fixed-size and varying size DPPs (Barthelmé et al., 2018) which is good news
- However problems remain:
- Hyperparameters (in the kernel function)
- Speeding up sampling
- Behaviour in high dimensions

Conclusion

- DPPs are an interesting class of tools for sampling
- As far as point processes go, they are fairly tractable
- They have fascinating links to Gaussian Processes, random matrix theory, graph theory, optimal design theory, stat. physics
- I've shown applications to graphs and coresets, but there are many more
- Some theoretical challenges remain

Post-doc position

- Post-doc position available in Grenoble, working with Ronald Phlypo \& myself.
- Topic is Gaussian processes on graphs, come see me!

References

Barthelmé, S., Amblard, P.-O., and Tremblay, N. (2018).
Asymptotic equivalence of fixed-size and varying-size determinantal point processes. arXiv preprint arXiv:1803.01576.
Kulesza, A. and Taskar, B. (2012). Determinantal point processes for machine learning. Foundations and Trends in Machine Learning, 5(2-3):123-286.
Li, C., Jegelka, S., and Sra, S. (2016). Efficient Sampling for k-Determinantal Point Processes.
Munteanu, A. and Schwiegelshohn, C. (2017). Coresets-Methods and History: A Theoreticians Design Pattern for Approximation and Streaming Algorithms. KI - KÃ®Enstliche Intelligenz.
Tremblay, N., Amblard, P.-O., and Barthelme, S. (2017a). Graph sampling with determinantal processes. working paper or preprint.
Tremblay, N., Barthelme, S., and Amblard, P.-O. (2017b).
Échantillonnage de signaux sur graphes via des processus déterminantaux. In GRETSI, Juan-les-Pins, France.

