Communiqué

Lorsque la graine devient plante, elle a 48 heures pour survivre

02 août 2018

Lorsqu’une graine germe, elle n’a que deux jours avant d’avoir épuisé ses réserves pour se transformer en plantule capable de photosynthèse. Des chercheurs romands en dévoilent le mécanisme.

Lors de la germination, l’embryon doit se transformer en jeune plantule capable de photosynthèse en moins de 48 heures. Pendant ce temps, il compte uniquement sur ses réserves internes, qui sont rapidement consommées. Il doit donc créer en un temps record des chloroplastes fonctionnels, des organites cellulaires qui lui permettront de produire des sucres pour assurer sa survie. Des chercheurs de l’Université de Genève (UNIGE) et de l’Université de Neuchâtel (UniNE) ont révélé dans la revue Current Biology les éléments-clés qui président à la formation de chloroplastes à partir de proplastes, jusqu’alors peu étudiés. Un tel mécanisme assure une transition rapide vers une croissance autonome, dès que la graine se décide à germer.

L’étonnante propagation et diversification des plantes à fleurs en milieu terrestre sont principalement dues à l’apparition des graines au cours de l’évolution. L’embryon, dormant, est encapsulé et protégé dans une structure très résistante, ce qui facilite sa dispersion. A ce stade, il ne peut pas faire de photosynthèse et devra donc consommer les réserves nutritives emmagasinées dans la graine, au cours de la germination. Ce processus, quant à lui, induit la transformation d’un embryon robuste en une jeune pousse fragile. «Il s’agit d’une étape critique dans la vie d’une plante, qui est étroitement réglementée, notamment par l’hormone de croissance acide gibbérellique (GA). La production de cette hormone est réprimée lorsque les conditions extérieures sont défavorables», explique Luis Lopez-Molina, professeur au Département de botanique et biologie végétale de la Faculté des sciences de l’UNIGE.

Des protéines d’importation soumises au broyeur cellulaire

Le réveil de l’embryon provoque la différenciation de ses proplastes en chloroplastes, de véritables usines capables de produire du sucre grâce à la photosynthèse. «Des milliers de protéines différentes doivent être importées dans les chloroplastes en formation, et ce processus ne peut se dérouler qu’en présence d’une protéine appelée TOC159. Si celle-ci fait défaut, la plante sera dépourvue de chloroplastes et demeurera albinos», explique Felix Kessler, directeur du Laboratoire de physiologie végétale et vice-recteur de l’UniNE.

Quel est le dialogue qui s’établit au cœur de la graine pour qu’elle demeure dans un état protégé ou, au contraire, se décide à germer? «Nous avons découvert que, tant que l’hormone GA est réprimée, un mécanisme se met en place pour que les protéines TOC159 soient acheminées vers la voirie cellulaire afin d’y être dégradées», détaille Venkatasalam Shanmugabalaji, chercheur au sein du groupe neuchâtelois et premier auteur de l’étude. Par ailleurs, d’autres protéines nécessaires à la photosynthèse, et dont TOC159 facilite l’importation, subissent le même sort.

Un biomécanisme ultraperformant

Lorsque les conditions extérieures deviennent favorables à une germination, la concentration d’hormone GA augmente dans la graine. Les biologistes ont démontré qu’elle bloque indirectement la dégradation des protéines TOC159. Celles-ci peuvent donc s’insérer dans la membrane des proplastes et permettre l’importation des cargaisons de protéines photosynthétiques qui échappent, elles aussi, à la voirie cellulaire.

La genèse des premiers chloroplastes fonctionnels, mise en place en moins de 48 heures, assure dès lors un passage rapide d’une croissance dépendante des réserves de l’embryon à un développement autonome. Ce mécanisme ultraperformant contribue à la survie de la jeune pousse dans un environnement inhospitalier, dans lequel elle va devoir affronter de nombreux défis.

Le communiqué au format pdf

Contact :

Luis Lopez-Molina
Professeur au Département de botanique et biologie végétale
Faculté des sciences, Université de Genève
+41 22 379 32 06
luis.lopezmolina@unige.ch

 

Felix Kessler
Professeur, Laboratoire de physiologie végétale
Vice-recteur, Université de Neuchâtel
+41 32 718 22 92
felix.kessler@unine.ch

 

Précurseur de chloroplaste (jaune) dans une cellule d’embryon de graine. La paroi (brun) sépare deux cellules, leurs vacuoles (gris clair) et leur cytoplasme (bleu). © Sylvain Loubéry, UNIGE.