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Goal: Inference for the distribution of Y 2

• Finite population U = {1, 2, . . . , N}
• Random variables {Yk : k ∈ U} are independent and

identically distributed

• Observe the realized values not for all of U , but only a
random subset:

{yk : k ∈ s ⊂ U}

• Goal is inference on the distribution of Y , or some of its
characteristics

• Concerned about effect of selection of s ⊂ U on inference
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Sample membership indicators 3

• Define sample membership indicators Ik, where

Ik =

{
1 if k ∈ s
0 otherwise

• If the selection is designed/controlled, the event {k ∈ s}
may depend on Yk

• If the selection is not designed/controlled, the event
{k ∈ s} may depend on Yk

• Probability of selection, in general, may depend on Yk
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Inclusion probabilities 4

• To allow probability of selection to depend on Yk, make
it random

• Inclusion probability is the realization of random variable
Πk that may depend on Yk:

πk = P [Ik = 1 | Yk = yk,Πk = πk]

= E [Ik | Yk = yk,Πk = πk]
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Examples with explicit dependence on Yk 5

• Cut-off sampling: πk = ρ(yk)1{yk>τ}.

• Case-control study (binary Y ):

πk =

{
1, for disease cases (yk = 1)

ρ < 1, for non-disease controls (yk = 0)

• Choice-based sampling (categorical Y ):

πk =

J∑
j=1

ρj1{yk=j}.

• Adaptive sampling, quota sampling, endogenous
stratification, . . .
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Length-biased sampling 6

• Length-biased sampling: πk ∝ yk > 0

• Good design for yk tries to be length-biased

•Why? For fixed size design,

Var

(∑
k∈s

yk
πk

∣∣∣∣∣Y U = yu,ΠU = πU

)
= −1

2

∑
j,k∈U

∆jk

(
yj
πj
− yk
πk

)2

= −1

2

∑
j,k∈U

∆jk

(
yj
cyj
− yk
cyk

)2

= 0

• Unbiased estimator with zero variance!
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Length-biased sampling: πk ∝ yk 7

y = textile fiber length (Cox, 1969), intercepted individual’s time

spent at recreational site, size of sighted wild animal, lifetime of marked-

recaptured individual, disease latency period,. . .

Sampling PointSampling Point
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Implicit dependence on Yk 8

• Often, Πk does not depend explicitly on Yk, but Yk has
predictive power for Πk

• Consider parametric empirical models:

E [Πk | Yk = yk] = µ(yk; ξ),

where ξ are nuisance parameters with respect to Y

• Or consider nonparametric empirical models:

E [Πk | Yk = yk] = µ(yk),
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The effect of selection 9

• Parametric model for average inclusion probability:

E [Πk | Yk = yk] = µ(yk; ξ)

• Relevant distribution of observed Yk is

f (y | Ik = 1) =
µ(y; ξ)∫

µ(y; ξ)f (y) dy
f (y) =: ρ(y; ξ)f (y),

in which the denominator depends on f

• If µ does not depend on y, then

f (y | Ik = 1) =
µ(ξ)

µ(ξ)
∫
f (y) dy

f (y) = f (y)
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Simple example 10

• Suppose Yk iid N (θ, σ2)

• Further suppose:

Πk | (Yk = yk) ∼ logN
(
ξ0 + ξyk, τ

2
)

E [Πk | Yk = yk] = exp

(
ξ0 + ξyk +

τ2

2

)
• Then it is easy to show that

Yk | (Ik = 1) ∼ N
(
θ + ξσ2, σ2

)
,

so sample mean will be biased and inconsistent for θ
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Application to a textbook survey 11

• Simulated data from Fuller (2009, Ex. 6.3.1) following
Korn and Graubard (1999, Ex. 4.3-1) for
1988 National Maternal and Infant Health Survey

• Conducted by US National Center for Health Statistics

• Goal: study factors related to poor pregnancy outcome

• Design: nationally-representative stratified sample from
birth records, with oversampling of low-birthweight
infants

– complex survey: stratified, unequal-probability
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Selection for NMIHS 12

• Let U = all US live births in 1988

• Let Yk = gestational age, strongly related to birthweight

• Suppose Yk iid N (θ, σ2)

• Inclusion probability in NMIHS depends on birthweight,
hence Yk is predictive:

E [Πk | Yk = yk] = exp

(
ξ0 − 0.175yk +

τ2

2

)
• Greater gestational age ⇒ less likely to be sampled
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Estimation for gestational age 13

• By previous computation, negative bias in the unweighted
sample mean:

Yk | (Ik = 1) ∼ N
(
θ − 0.175σ2, σ2

)
,

> svymean(~GestAge, birth.design)

mean SE

GestAge 39.138 0.0941

> # Unweighted minus weighted:

> mean(birth$GestAge) - svymean(~GestAge, birth.design)

-2.2114

• Here we used classical design-based techniques to deal
with effects of selection
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Horvitz-Thompson estimation 14

• Provided πk > 0 for all k ∈ U plus additional mild
conditions,

θ̂HT =
1

N

∑
k∈U

yk
Ik
πk

is unbiased and consistent for finite-population average:

E

[
1

N

∑
k∈U

yk
Ik
πk

∣∣∣∣∣ πU ,yU
]

=
1

N

∑
k∈U

yk = θN

• Consistency for θ then follows by chaining argument:

θ̂HT − θ =
(
θ̂HT − θN

)
+ (θN − θ) = small + smaller
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Horvitz-Thompson plug-in principle: explicit 15

• If finite population parameter can be written explicitly as

θN = ϑ

∑
k∈U

y
(1)
k , . . . ,

∑
k∈U

y
(p)
k


for some smooth map ϑ(·), then

θ̂HT = ϑ

∑
k∈U

y
(1)
k

Ik
πk
, . . . ,

∑
k∈U

y
(p)
k

Ik
πk


is consistent and asymptotically design-unbiased for θN
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Horvitz-Thompson plug-in principle: implicit 16

• If a finite population parameter can be written as solution
to a population-level estimating equation,

θN solves 0 = ϕ

∑
k∈U

y
(1)
k , . . . ,

∑
k∈U

y
(p)
k ; θ

 ,

then HT plug-in estimator is obtained by solving weighted
sample-level estimating equation:

θ̂HT solves 0 = ϕ

∑
k∈U

y
(1)
k

Ik
πk
, . . . ,

∑
k∈U

y
(p)
k

Ik
πk

; θ


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Pseudo-likelihood estimation 17

• If estimating equation uses the population-level score,

0 =
∂

∂θ

∑
k∈U

ln f (yk; θ)

∣∣∣∣∣
θ=θN

,

then θN are population-level MLE’s

• If it uses the weighted sample-level score,

0 =
∂

∂θ

∑
k∈U

ln f (yk; θ)
Ik
πk

∣∣∣∣∣
θ=θ̂HT

,

then θ̂HT are maximum pseudo-likelihood estimators
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HT plug-in principle plus chaining argument 18

• Combining plug-in and chaining argument:

– Link 1: for the superpopulation model parameter θ,
define a corresponding finite population parameter θN

– Link 2: estimate θN by θ̂HT using HT plug-in principle

• Typically,

θ̂HT−θ =
(
θ̂HT − θN

)
+(θN − θ) = Op

(
n−α

)
+Op

(
N−α

)
where n << N , so ignore the second component

• Use design-based methods to estimate the variance of the
first component, ignoring the second
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Options for dealing with selection 19

•Default Option: Assume informative selection

– use HT plug-in and chaining

– simple and readily available in software

– design-based option is not usually the most efficient

•Other Options: Test for informative selection

– if no evidence of selection effects, proceed with fully-
efficient likelihood-based methods

– if evidence of selection effects, proceed with likelihood-
based procedures that account for effects of selection
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Likelihood-based approaches to estimation 20

•Pseudo-likelihood: easy but least efficient

• Full likelihood: most efficient, often impractical

– in general, joint distribution of all observed Yk, Ik,Πk
– with no selection, joint distribution of Yk only

• Sample likelihood: treat {Yk}k∈s as if they were
independently distributed with marginal pdf

f (y | Ik = 1) =
µ(y; ξ)∫

µ(y; ξ)f (y) dy
f (y)

• The typical efficiency ordering:

Pseudo < Sample < Full
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Sample likelihood estimation 21

• Sample likelihood has long history:

– Patil and Rao (1978), Breslow and Cain (1988), Krieger
and Pfeffermann (1992), Pf., Krieger and Rinott (1998),
Pf. and Sverchkov (2009)

• But theoretical foundation has been less developed:

– assuming n fixed as N →∞, PKR (1998) show point-
wise convergence of joint pdf of responses to product
of f (yk | Ik = 1)

•Want theoretical results that account for dependence in-
duced by design
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Our contribution to sample likelihood estimation 22

• Bonnéry, Breidt, Coquet (2018, Bernoulli):

– assume
√
n-consistent and asymptotically normal se-

quence of estimators of nuisance parameters ξ

– often attainable via design-based regression: ξ̂HT

– plug in ξ̂HT to product of f (yk | Ik = 1; θ):∏
k∈s

µ(yk; ξ̂HT)∫
µ(y; ξ̂HT)f (y; θ) dy

f (yk; θ)

– maximize with respect to θ to get θ̂SMLE
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Our contribution to sample likelihood estimation, II 23

• Consistency and asymptotic normality of θ̂SMLE

– assumptions are verifiable for some realistic designs

– asymptotic approximations work well in simulations

• Asymptotic covariance matrix depends on

– joint covariance matrix of score vector and ξ̂HT, esti-
mated via design-based methods

– information matrix for θ, estimated via model-based
methods (plug SMLEs into analytic derivation)

• Design-based regression problem followed by classical like-
lihood problem
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Approaches to testing 24

•Approach 1: Test for dependence on yk of

E [Πk | Yk = yk] = µ(yk; ξ)

– this is a regression specification test

– parametric or nonparametric

•Approach 2: Test for a difference between design-
weighted and unweighted . . .

– . . . parameter estimates

– . . . probability density function estimates

– . . . cumulative distribution function estimates
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Intuition of Approach 2 25

• Design-weighted corrects for ρ and targets f (perhaps
inefficiently)

• Unweighted does not correct for ρ and targets ρf

• Difference between weighted and unweighted indicates
ρ 6≡ 1, so selection is informative
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F -test based on difference in parameter estimates 26

• Consider the normal linear model with xk and xk-by-
design weight interactions (including intercept-by-weight):

Y s =
[
x′k

1
πk
x′k

] [ θ
γ

]
+ εs, εs ∼ N

(
0, σ2I

)
where [x′k]k∈s is full-rank

• Algebraically, E
[
θ̂
]

= E
[
θ̂HT

]
⇔ γ = 0

• Test H0 : γ = 0 versus Ha : γ 6= 0 via the usual F -test

– DuMouchel and Duncan 1983; Fuller 1984
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F-Test for gestational age example 27

• Full/alternative model: Yk ∼ N
(
θ + γ(π−1

k ), σ2
)

• Reduced/null model: Yk ∼ N
(
θ, σ2

)
• Test null hypothesis of non-informative selection:

> fit.full <- lm(GestAge ~ weight, data = birth)

> fit.reduced <- lm(GestAge ~ 1, data = birth)

> anova(fit.reduced, fit.full)

Analysis of Variance Table

Model 1: GestAge ~ 1

Model 2: GestAge ~ weight

Res.Df RSS Df Sum of Sq F Pr(>F)

1 89 1505.04

2 88 256.35 1 1248.7 428.66 < 2.2e-16 ***

---
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Wald test based on difference in parameter estimates 28

•More generally, Pfeffermann (1993) derived the Wald-
type test statistic,

WN =
(
θ̂HT − θ̂

)′{
−Ĵ−1 + Ĵ−1HTK̂HTĴ

−1
HT

}−1 (
θ̂HT − θ̂

)
where J and K matrices depend on

π−1
k , Var

(
∂ log f (yk | θ)

∂θ

)
,
∂2 log f (yk | θ)

∂θ ∂θ′

• Under the null hypothesis E
[
θ̂HT − θ̂

]
= 0, WN con-

verges in distribution to a chi-squared distribution with
degrees of freedom equal to dim(θ)
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Test based on likelihood ratio 29

•Wald test requires considerable derivation

• Alternative test does not compare parameter estimates
directly, but evaluates their likelihood ratio

– unweighted log-likelihood ratio:

LR = 2
{

lnL(θ̂)− lnL(θ̂HT)
}

– weighted (pseudo) log-likelihood ratio:

LRHT = 2
{

lnLHT(θ̂HT)− lnLHT(θ̂)
}

• (W. Herndon, 2014 CSU dissertation advised by Breidt and Opsomer,

and joint with R. Cao and M. Francisco-Fernández)
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Likelihood ratio test, continued 30

• Under H0 : non-informativeness, the LR test statistics
converge,

LR
d→

p∑
i=1

λiZ
2
i , LRHT

d→
p∑
i=1

λHT,iZ
2
i

where Zi iid N (0, 1) and λi, λHT,i are eigenvalues of
matrices involving

π−1
k , Var

(
∂ log f (yk | θ)

∂θ

)
,
∂2 log f (yk | θ)

∂θ ∂θ′

• Seems as bad as Wald, but . . .
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Bootstrapping is easy 31

• Parametric bootstrap version of LR test statistic:

– draw bootstrap sample from fitted density and con-
struct LR test statistic B times

– bootstrap p-value= B−1∑B
b=1 1{LR(b) > LR}

– simple to implement: no information computations

• Both the linear combination of χ2
1’s and the bootstrap

version work well in simulations

– correct size under H0

– good power for a range of informative designs
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Now consider nonparametric estimation and tests 32

• Nonparametric density estimation and testing

– alternatives to “classic” design-weighted KDE

– compare design-weighted KDE to unweighted KDE for
testing?

• Nonparametric CDF estimation and testing

– brief review of CDF estimation under informative se-
lection

– tests comparing design-weighted empirical CDF to un-
weighted CDF
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Kernel density estimation under informative selection 33

• Bonnéry, Breidt, Coquet (2017, Metron)

• Under standard assumptions, unweighted KDE

1

n

∑
k∈s

1

h
K

(
yk − y
h

)
with kernel K, bandwidth h converges not to f (y), but

µ(y; ξ)∫
µ(y; ξ)f (y) dy

f (y) = ρ(y; ξ)f (y)

– usual O(h2) rate for bias, in estimation of ρf

– “usual” O
(
(Nh

∫
µf )−1

)
variance

33



KDE under informative selection, continued 34

• Unweighted KDE converges to

µ(y; ξ)∫
µ(y; ξ)f (y) dy

f (y) = ρ(y; ξ)f (y)

• “Outer adjustment”: use unweighted KDE

– estimate and remove ρ

– or estimate and remove µ and
∫
µf

• “Inner adjustment”: use weighted KDE

– weights from inclusion probabilities regressed on y

– or from design weights regressed on y
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Outer = Inner for design-weighted KDE 35

• “Outer adjustment”: Estimating µ and
∫
µf via

design-weighted nonparametric regression leads to

1∑
k∈s π

−1
k

∑
k∈s

1

h
K

(
yk − y
h

)
1

πk

• But this is just “Inner adjustment” using the original
design weights

• This standard, design-weighted KDE is the baseline for
comparison
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Integrated MSE results with gestational age model 36

• n = 90, 1000 reps with 5-per-stratum in 18 strata

E [Π | Y = y] IMSE E
[
Π−1 | Y = y

]
IMSE

= µ(y; ξ) Ratio = ω(y; δ) Ratio

µ, ξ known 1.5 — —
Outer ξ unknown 1.7 — —

misspecified µ 1.6 misspecified ω 1.6
kernel reg. 1.0 kernel reg. 0.96
µ, ξ known 0.9 — —

Inner ξ unknown 0.96 — —
misspecified µ 0.94 misspecified ω 0.93

kernel reg. 1.4 kernel reg. 1.4
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Testing for informativeness using KDE? 37

• KDE summary:

– nonparametric outer adjustment works well

– parametric inner adjustment works slightly better

• Design-weighted or adjusted KDE converges to f

• Unweighted KDE converges to ρf

• At a minimum, this is an exploratory tool that may sug-
gest informativeness

• Formal testing is a subject of future work
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CDF estimation under informative selection 38

• Bonnéry, Breidt, Coquet (2012, Bernoulli)

• Under mild conditions, the (unweighted) empirical CDF

F̂ (α) =

∑
k∈U 1(−∞,α](Yk)Ik

1 (IU = 0) +
∑

k∈U Ik

converges uniformly in L2:

sup
α∈R

∣∣∣F̂ (α)− Fρ(α)
∣∣∣ = ‖F̂ − Fρ‖∞

L2→
N→∞

0

where the limit CDF is distorted by selection:

Fρ(α) =

∫ α
−∞ µ(y; ξ)f (y) dy∫
µ(y; ξ)f (y) dy

=

∫ α

−∞
ρ(y; ξ)f (y) dy
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Return to gestational age example 39

• Looks like informative selection: can we test?
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Classical tests based on empirical CDFs 40

• Functional CLT for independent empirical CDFs:

Dn(α) =

√
n

2

{
F

(1)
n (α)− F (2)

n (α)
}

converges in distribution to a Brownian bridge: zero-
mean Gaussian process GF with covariance function

E [GF (s)GF (t)] = F (s ∧ t)− F (s)F (t)

• Kolmogorov–Smirnov two-sample test: ‖Dn(α)‖∞
• Cramér–von Mises two-sample test:

∫∞
−∞D2

n(α) dFn(α),

with Fn = ψF
(1)
n + (1− ψ)F

(2)
n for some ψ ∈ [0, 1]
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Adapting to the survey context 41

• Boistard, Lopuhaä, and Ruiz-Gazen (2017) develop func-
tional CLT for

√
n

{∑
k∈U 1(Yk ≤ α)Ikπ

−1
k

N̂
− F (α)

}
via assumptions on

– CLT for HT, to get finite dimensional distributions

– higher-order inclusion probabilities, to get tightness

• Adapt and extend to weighted minus unweighted CDF:

TN(α) =
√
n

{∑
k∈U 1(Yk ≤ α)Ikπ

−1
k

N̂HT

−
∑

k∈U 1(Yk ≤ α)Ik
n

}
(Teng Liu, CSU PhD, 2019)
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Adapting to the survey context, II 42

•Result: Under the null of no informative selection, TN(α)
converges in distribution to a scaled Brownian bridge:
zero-mean Gaussian process GF with covariance function

E [GF (s)GF (t)] = C {F (s ∧ t)− F (s)F (t)}
where

C = lim
N→∞

n

N2

∑
k∈U

E

[
1

Πk

(
1− NΠk

n

)2
]
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Adapting to the survey context, III 43

• Estimate the scaling factor

C = lim
N→∞

n

N2

∑
k∈U

E

[
1

Πk

(
1− NΠk

n

)2
]

using design-based methods:

ĈHT =
n

N̂2
HT

∑
k∈U

Ik
π2
k

(
1− N̂HTπk

n

)2
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Adapting to the survey context, IV 44

• Under probability-proportional-to-size sampling, the scale
factor simplifies further: with wk = π−1

k ,

Ĉpps = (Sw/w̄)2 (n− 1)/n ' (CVw)2

• Kolmogorov–Smirnov test of informative selection:

Ĉ−1/2‖Tn(α)‖∞
• Cramér–von Mises test of informative selection:

Ĉ−1
∫ ∞
−∞

T 2
n(α) dH(α),

with H = ψF̂HT + (1− ψ)F̂ for some ψ ∈ [0, 1]
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Test statistic distributions for gestational age 45

• Asymptotic distribution and empirical distribution of K–S
and C–vM, with n = 300 and 1000 reps
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Power for gestational age simulation 46

• Empirical ξ = 0.175 in Yk | (Ik = 1) ∼ N
(
θ − ξσ2, σ2

)
• Choose grid of ξ ∈ [0, 0.03]; use n = 300 and 1000 reps each
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A different example! 47

• Suppose Yk are iid location-scale tν:

Yk = θ + σ
Zk√
Vk/ν

√
ν − 2

ν
= θ + σkZk,

{Zk} iid N (0, 1) independent of {Vk} iid χ2
ν

• Informative Poisson sampling with πk ∝ σk

– minimizes design-model variance of HT estimator

• σk → σ as ν →∞, and informativeness disappears
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Test statistic distributions for location-scale tν 48

• Asymptotic distribution and empirical distribution of K–S
and C–vM, with n = 300 and 1000 reps
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Power for location-scale tν simulation 49

• Choose ν = 22, 23, . . . , 29; use n = 300 and 1000 reps each

• DD test gets some “lucky” power at low df due to random variation
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Lucky power? 50

•Weighted and unweighted estimators have the same mean

• At very low degrees of freedom, HT is (particularly) highly
variable

• Difference between weighted and unweighted is large due
to chance variation

• DD correctly rejects by incorrectly assuming large
difference is a difference in the mean
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Summary 51

• Informative selection is pervasive

• Strategy of comparing weighted to unweighted works broadly:

– parametric, from linear models to likelihood ratios

– nonparametric, from kernel density estimation to
classic two-sample tests

• Design-weighted estimation is a “safe” and readily-available
solution

• Sample likelihood approach is a viable alternative
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THANK YOU 52

• Thank you for your attention

• Thanks to Matthieu, Guillaume, and Yves for a wonderful
conference!
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