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Goal: Inference for the distribution of Y 2

e Finite population U = {1,2,..., N}

e Random variables {Y;. : & € U} are independent and
identically distributed

e Observe the realized values not for all of U, but only a
random subset:

{yp : kescC U}

e Goal is inference on the distribution of Y, or some of its
characteristics

e Concerned about effect of selection of s C U on inference



Sample membership indicators 3

e Define sample membership indicators [;., where

[k{l fkcs

0 otherwise
o If the selection is designed/controlled, the event {k € s}
may depend on Y}

e If the selection is not designed/controlled, the event
{k € s} may depend on Y.

e Probability of selection, in general, may depend on Y.



Inclusion probabilities 4

e To allow probability of selection to depend on Y;., make
it random

e Inclusion probability is the realization of random variable
[1;. that may depend on Y}.:

T = Pl = 1Y, = yg, H} = m]
= E Iy | Yy = yg, Uy = 7]



Examples with explicit dependence on Y.

o Cut-off sampling: mj, = p(yy) Ly, ~ry-
e Case-control study (binary Y):

1, for disease cases (y;. = 1)
1. =
g p < 1, for non-disease controls (y;. = 0)

e Choice-based sampling (categorical Y'):

J
Tk = Z'Oj]l{yk:j}°

J=1

e Adaptive sampling, quota sampling, endogenous
stratification, . ..



Length-biased sampling

e Length-biased sampling: 7. oc y;. > 0
e Good design for y;. tries to be length-biased
e Why? For fixed size design,

Yk _ B 1
Var (Zm Yy=y,1lly= 7TU> =5 Z A (
kes 1,keU
1
-5 3

e Unbiased estimator with zero variance!




Length-biased sampling: ;. o< ;. ;

y = textile fiber length (Cox, 1969), intercepted individual's time
spent at recreational site, size of sighted wild animal, lifetime of marked-

recaptured individual, disease latency period,. ..
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Implicit dependence on Y. 8

e Often, II;. does not depend explicitly on Y., but Y} has
predictive power for I1;.

e Consider parametric empirical models:
E [y | Yy = yi] = wlyg: §),
where £ are nuisance parameters with respect to Y

e Or consider nonparametric empirical models:

E I | Yy = yi) = nlyg),



The effect of selection

e Parametric model for average inclusion probability:
E [y | Yy = y] = plyp: )

e Relevant distribution of observed Y} is

o m(y; §) o
f@l&—i%—fM%@ﬂw@ﬁ@%<M%©ﬂw,

in which the denominator depends on f

e If 11 does not depend on y, then

o p(§)
f@’%_ﬁ)_u@%ﬂﬂwdy

fly) = fy)



Simple example

10

e Suppose Y. iid AV (6, 02)

e Further suppose:

Mg | (Yi = yg) ~ log N (50 +€yk772)

>
-
E | Yy =y = exp <€o+€yk +?>

e Then it is easy to show that
Vi | (I =1) ~ N (0+€0%,0%),

so sample mean will be biased and inconsistent for 6



Application to a textbook survey 11

e Simulated data from Fuller (2009, Ex. 6.3.1) following
Korn and Graubard (1999, Ex. 4.3-1) for
1988 National Maternal and Infant Health Survey

e Conducted by US National Center for Health Statistics
e Goal: study factors related to poor pregnancy outcome

e Design: nationally-representative stratified sample from
birth records, with oversampling of low-birthweight
infants

— complex survey: stratified, unequal-probability



Selection for NMIHS 12

o Let U = all US live births in 1988
e L et Y;. = gestational age, strongly related to birthweight
e Suppose Y. iid AV (6, 02)

e Inclusion probability in NMIHS depends on birthweight,
hence Y}. is predictive:

>
_
E g | Y =y = exp <€o — 0.175y + 7)

e Greater gestational age = less likely to be sampled



Estimation for gestational age 13

e By previous computation, negative bias in the unweighted
sample mean:

Y | (I = 1) ~ N (9 — 0.17502 02) |

> svymean(~GestAge, birth.design)
mean SE
GestAge 39.138 0.0941
> # Unweilghted minus weighted:
> mean (birth$GestAge) - svymean(~GestAge, birth.design)
-2.2114

e Here we used classical design-based techniques to deal
with effects of selection



Horvitz- Thompson estimation 14

e Provided 7, > 0 for all £ € U plus additional mild

conditions, | ;
) k
Oyt = — —
= Y ulh
keU
is unbiased and consistent for finite-population average:

%Zyki—z :%Zykzejv

keU
e Consistency for 6 then follows by chaining argument:

I T, Yu

é\HT — 0 = (é\HT — (QN) + (9]\[ — (9) — small + smaller



Horvitz- Thompson plug-in principle: explicit 15

e |f finite population parameter can be written explicitly as

Oy =0 Zy]iw,...,z:ylip)

keU keU

for some smooth map ¥(+), then

O = Zykﬂ> Zyk%

kelU keU

is consistent and asymptotically design-unbiased for 0y



Horvitz- Thompson plug-in principle: implicit 16

e |f a finite population parameter can be written as solution
to a population-level estimating equation,

O solves 0 = ¢ Zyg),...,z;ylip);ﬁ :

kelU kelU

then HT plug-in estimator is obtained by solving weighted
sample-level estimating equation:

(p) 1f; .
9HT solves 0 = ¢ Z yk W—, Z yk — 0
kel kel 3



Pseudo-likelihood estimation

17

e |f estimating equation uses the population-level score,

)

0=0,

0
0= @Zlnﬂyk;@)

keU

then 6y are population-level MLE's

o |f it uses the weighted sample-level score,

. N
0= %Zlnf(ykﬁ)ﬂ_

keU

Y

0=0pr

then O are maximum pseudo-likelihood estimators



HT plug-in principle plus chaining argument 18

e Combining plug-in and chaining argument:

— Link 1: for the superpopulation model parameter 6,
define a corresponding finite population parameter 6y

— Link 2: estimate 6y by é\HT using HT plug-in principle
e Typically,

Orr—0 = @HT = 9N)+(9N —0) =0y (n~*)+0p (N™7)
where n << N, so ignore the second component

e Use design-based methods to estimate the variance of the
first component, ignoring the second



Options for dealing with selection 19

e Default Option: Assume informative selection

—use HT plug-in and chaining
—simple and readily available in software
— design-based option is not usually the most efficient

e Other Options: Test for informative selection

—if no evidence of selection effects, proceed with fully-
efficient likelihood-based methods

— if evidence of selection effects, proceed with likelihood-
based procedures that account for effects of selection



Likelihood-based approaches to estimation 20

e Pseudo-likelihood: easy but least efficient
e Full likelihood: most efficient, often impractical

—in general, joint distribution of all observed Y., I;., I1;.
— with no selection, joint distribution of Y7. only

e Sample likelihood: treat {Y.}.c, as if they were
independently distributed with marginal pdf

o w(y; )
fWlh=10= e ¥

e [ he typical efficiency ordering:

Pseudo < Sample < Full



Sample likelihood estimation 21

e Sample likelihood has long history:

— Patil and Rao (1978), Breslow and Cain (1988), Krieger
and Pfeffermann (1992), Pf., Krieger and Rinott (1998),
Pf. and Sverchkov (2009)

e But theoretical foundation has been less developed:

— assuming n fixed as N — 0o, PKR (1998) show point-
wise convergence of joint pdf of responses to product

of flyr | I =1)

e Want theoretical results that account for dependence in-
duced by design



Our contribution to sample likelihood estimation 22

e Bonnéry, Breidt, Coquet (2018, Bernoulli):

—assume y/n-consistent and asymptotically normal se-
quence of estimators of nuisance parameters &

— often attainable via design-based regression: &

— plug in gHT to product of f(yi. | I;. = 1;0):

u(yr: Enr) y
/gsfﬂ(y;gHT)f(y; 0) dyf<yka )

— maximize with respect to 6 to get Oq\i1




Our contribution to sample likelihood estimation, |l 23

e Consistency and asymptotic normality of Oq\1E

— assumptions are verifiable for some realistic designs

— asymptotic approximations work well in simulations
e Asymptotic covariance matrix depends on

— joint covariance matrix of score vector and &y, esti-
mated via design-based methods

— information matrix for 6, estimated via model-based
methods (plug SMLEs into analytic derivation)

e Design-based regression problem followed by classical like-
lihood problem



Approaches to testing 24

e Approach 1: Test for dependence on ;. of
E [ | Y = yil = wlyg: §)

— this is a regression specification test
— parametric or nonparametric
e Approach 2: Test for a difference between design-
weighted and unweighted . ..
— ... parameter estimates
— ... probability density function estimates

— ... cumulative distribution function estimates



Intuition of Approach 2 25

e Design-weighted corrects for p and targets f (perhaps
inefficiently)

e Unweighted does not correct for p and targets pf

e Difference between weighted and unweighted indicates
p Z 1, so selection is informative



F'-test based on difference in parameter estimates 26

e Consider the normal linear model with x; and x;-by-
design weight interactions (including intercept-by-weight):

where [2) ];.c is full-rank

AN

e Algebraically, It {9} =I5 {é\HT} & v=0
o Test Hy: v = 0 versus H, : v # 0 via the usual F'-test
— DuMouchel and Duncan 1983; Fuller 1984



F-Test for gestational age example

27

e Full/alternative model: Y. ~ N (9 + ’Y(?Tk_l), 02)

e Reduced/null model: Y. ~ N (9,02)

e Test null hypothesis of non-informative selection:

> fit.full <- 1m(GestAge ~ weight, data = birth)
> fit.reduced <- 1m(GestAge ~ 1, data = birth)

> anova(fit.reduced, fit.full)

Analysis of Variance Table

Model 1: GestAge " 1
Model 2: GestAge ~ weight
Res.Df RSS Df Sum of Sq F Pr (>F)
1 89 1505.04
2 88 256.35 1 1248.7 428.66 < 2.2e-16 **x*



Wald test based on difference in parameter estimates 25

e More generally, Pfeffermann (1993) derived the Wald-
type test statistic,

P

~ -~ ~ 4 ~ 15 oy -1 /<
Wy = (eHT - 9) {—J— + JgTKHTJgT} <9HT - 9)
where J and K matrices depend on

_ Olog f(yr | 0)\ 0%log flyy | 6)
1 g J (Y g J (Y
Tk Var( 90 ) 90 00’

e Under the null hypothesis It PHT — 5} = 0, Wy con-

verges in distribution to a chi-squared distribution with
degrees of freedom equal to dim(0)



Test based on likelihood ratio 29

e Wald test requires considerable derivation

e Alternative test does not compare parameter estimates
directly, but evaluates their likelihood ratio

— unweighted log-likelihood ratio:
LR =2 {m £(6) — In L(@HT)}
— weighted (pseudo) log-likelihood ratio:

LRyt =2 {hﬁ Lyr(fpr) — In £HT(9)}
® (W. Herndon, 2014 CSU dissertation advised by Breidt and Opsomer,

and joint with R. Cao and M. Francisco-Fernandez)



Likelihood ratio test, continued 30

e Under H{ : non-informativeness, the LR test statistics
converge,

p p
LR 53" NZ2, LRyr 53 Ara 27
1=1 1=1
where Z; iid M (0,1) and X;, Ay ; are eigenvalues of
matrices involving

_ Olog f(yr | 0)\ 0%log flyy | 6)
1 g J (Y g J (Y
Tk Var( 90 ) 90 00’

e Seems as bad as Wald, but ...




Bootstrapping is easy 31

e Parametric bootstrap version of LR test statistic:

—draw bootstrap sample from fitted density and con-
struct LR test statistic B times
— bootstrap p-value= B! Zszl 1{LR® > LR}
— simple to implement: no information computations
e Both the linear combination of X%'s and the bootstrap
version work well in simulations
— correct size under H

— good power for a range of informative designs



Now consider nonparametric estimation and tests 32

e Nonparametric density estimation and testing

— alternatives to “classic” design-weighted KDE
— compare design-weighted KDE to unweighted KDE for
testing?
e Nonparametric CDF estimation and testing
— brief review of CDF estimation under informative se-
lection
— tests comparing design-weighted empirical CDF to un-

weighted CDF



Kernel density estimation under informative selection 33

e Bonnéry, Breidt, Coquet (2017, Metron)
e Under standard assumptions unweighted KDE
_Z (yk_ >
kES
with kernel K, bandwidth h converges not to f(y), but

w(y; €) o
Tl Oy’ @) =P8 W)

—usual O(h?) rate for bias, in estimation of pf
— “usual” O ((Nhf,uf)_l) variance




KDE under informative selection, continued 34

e Unweighted KDE converges to

i M(yg(g; Jf()y) dyf (y) = p(y;§) f(y)

e “Outer adjustment”: use unweighted KDE

— estimate and remove p

— or estimate and remove p and [ pf
e “Inner adjustment”: use weighted KDE

— weights from inclusion probabilities regressed on y
— or from design weights regressed on y



Outer = Inner for design-weighted KDE 35

e “Outer adjustment”: Estimating p and [ pf via
design-weighted nonparametric regression leads to

Yk — 1
> (M)

e But this is just “Inner adjustment” using the original
design weights

e This standard, design-weighted KDE is the baseline for
comparison



Integrated MSE results with gestational age model

36

e nn = 90, 1000 reps with 5-per-stratum in 18 strata

E[I|Y =y| IMSE
= p(y;§) Ratio

E[II"|Y =y| IMSE

= w(y;0) Ratio

Outer

1, & known 1.5
& unknown 1.7
misspecified 1 1.6
kernel reg. 1.0

misspecified w 1.6
kernel reg. 0.96

Inner

1, & known 0.9
& unknown 0.96
misspecified 11 0.94
kernel reg. 1.4

misspecified w 0.93
kernel reg. 1.4




Testing for informativeness using KDE? 37

e KDE summary:

— nonparametric outer adjustment works well

— parametric inner adjustment works slightly better
e Design-weighted or adjusted KDE converges to f
e Unweighted KDE converges to pf

e At a minimum, this is an exploratory tool that may sug-
gest informativeness

e Formal testing is a subject of future work



CDF estimation under informative selection 38

e Bonnéry, Breidt, Coquet (2012, Bernoulli)
e Under mild conditions, the (unweighted) empirical CDF

-~ ZkeU —00,0] (Yk>lk
SR N ST A

converges uniformly in Lo:

~ ~ L
Fla) = Fy(@)| = |F = Fll 3 0

Sup
acR

where the limit CDF is distorted by selection:

oo iy ) fy) dy /O‘

o)== eorwdy /.

(o) =

p(y; §) f(y) dy



Return to gestational age example

39

e Looks like informative selection: can we test?

Unweighted and Weighted CDF's
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|

f(x)
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0.2
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25 30 35 40
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Classical tests based on empirical CDFs 40

e Functional CLT for independent empirical CDFs:

Dafe) = Y { V(@) - FiP (@)

converges in distribution to a Brownian bridge: zero-
mean Gaussian process GGy with covariance function

E[Gp(s)Gp(t)] = F(s At) = F(s)F(t)
e Kolmogorov—Smirnov two-sample test: || Dy (a)||oo
e Cramér—von Mises two-sample test: [ D2 (o) dFp(c),

with Fj, = zpr,gD + (1 — w)F7§2) for some ¢ € |0, 1]



Adapting to the survey context 41

e Boistard, Lopuhaa, and Ruiz-Gazen (2017) develop func-
tional CLT for

a

via assumptions on

ZkeU 1(Y; < O‘)Ilﬂrk_l
N

~ F(@}

— CLT for HT, to get finite dimensional distributions
— higher-order inclusion probabilities, to get tightness
e Adapt and extend to weighted minus unweighted CDF:
Ty(a) = \/*{ZkeU (Vi < a)lpmy, 1 ZkeU]l(Yk = O‘ﬂk}
Nyt n

(Teng Liu, CSU PhD, 2019)




Adapting to the survey context, | 42

e Result: Under the null of no informative selection, T («)
converges in distribution to a scaled Brownian bridge:
zero-mean Gaussian process G g with covariance function

E[Gr(s)Gp(t)] = C{F(s Nt) = F(s)F(t)}

where




Adapting to the survey context, Il 43

e Estimate the scaling factor

1 NI\ 2
C = lim —ZE H_<_—k)
k n

N
oo N2 f= | ]

using design-based methods:




Adapting to the survey context, |V 44

e Under probability-proportional-to-size sampling, the scale
factor simplifies further: with w;. = 7'('k_1,

Cops = (Suw/w)’ (n = 1)/n = (CVu)?
e Kolmogorov—Smirnov test of informative selection:
C 2Tl

e Cramér—von Mises test of informative selection:
0.9
c! / T2 (o) dH(c),
— OO

with H = ¢ Fyp + (1— zp)ﬁ for some ¢ € |0, 1]



Test statistic distributions for gestational age 45

e Asymptotic distribution and empirical distribution of K-S
and C—vM, with n = 300 and 1000 reps
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Power for gestational age simulation

e Empirical £ =0.175in Y}, | (I = 1) ~ N (0 — &02, 0?)
e Choose grid of ¢ € [0,0.03]; use n = 300 and 1000 reps each
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A different example!

47

e Suppose Y. are iid location-scale %,:
A v —2

VVilvV v

{Z:.} iid N(0,1) independent of {V3.} iid x2

e Informative Poisson sampling with 7. < o}.

Ykze—l—(f

=0+ 0.7},

— minimizes design-model variance of HT estimator

® 0. — 0 as Vv — 00, and informativeness disappears



Test statistic distributions for location-scale ¢, 48

e Asymptotic distribution and empirical distribution of K-S
and C—vM, with n = 300 and 1000 reps
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Power for location-scale ¢, simulation 49

o Choose v = 22,23 ..., 2% use n = 300 and 1000 reps each

e DD test gets some “lucky” power at low df due to random variation
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Lucky power? 50

e Weighted and unweighted estimators have the same mean

o At very low degrees of freedom, HT is (particularly) highly
variable

e Difference between weighted and unweighted is large due
to chance variation

e DD correctly rejects by incorrectly assuming large
difference is a difference in the mean



Summary 51

e Informative selection is pervasive
e Strategy of comparing weighted to unweighted works broadly:

— parametric, from linear models to likelihood ratios

— nonparametric, from kernel density estimation to
classic two-sample tests

e Design-weighted estimation is a “safe’ and readily-available
solution

e Sample likelihood approach is a viable alternative



THANK YOU 52

e Thank you for your attention

e [hanks to Matthieu, Guillaume, and Yves for a wonderful
conference!



