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increase of the average energy prices of the previous five years results in a 2.7% and 4.5% 
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respectively. We also find that the impact of energy prices increases with an increasing lag 
between energy prices and innovation activities. Robustness tests confirm the main results.  
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1 Introduction 

Despite the fact that climate change should ideally increase the demand for green technologies, 

firms have still low incentives to invest in green technologies as there is a ‘double externality 

problem’ (see, e.g., Beise and Rennings 2005, Faber and Frenken 2009, Hall and Helmers 2011). 

Firstly, due to the public goods nature of knowledge (see, e.g., Geroski 1995, Popp 2011) and 

due to financial market imperfections green technology investment decisions are complex and 

often linked with financial constraints. Secondly, because the greatest benefits from green 

innovation are likely to be public rather than private, the customers’ willingness to pay for these 

innovations is low. In line with this literature a study by Soltmann et al. (2012) shows that 

economic performance is negatively affected by green inventions. This result indicates that – 

given the current level of green promotion – free market incentives alone are not sufficient to 

allow the green invention activities of industries to rise considerably. However, technological 

innovations are needed to solve environmental problems. “Without significant technological 

development of both existing low-carbon technologies and new ones, climate change is unlikely 

to be limited to anything like 2ºC” (see Helm 2012, p. 213).  Accordingly, a kind of intervention 

is required to stimulate green innovation activities.  

The paper at hand focuses on energy prices as a measure for environmental policy and 

investigates if energy prices are likely to contribute to increase the probability of ‘clean’ 

innovations. More concretely, we investigate if the effects of energy prices are different for 

‘clean’ innovations than for ‘other than clean’ innovations.  

Empirical research linking environmental policy and innovation is related to a small but 

increasing literature. A first group of studies uses pollution abatement control expenditures 

(PACE) to proxy for environmental regulation stringency. Brunnermeier and Cohen (2003) 

found for the US that PACE is positively related to environmental innovation. Based on a data 

set that includes 17 countries Lanjouw and Mody (1996) also found a positive correlation 

between PACE and environmental innovation. However, the use of PACE as a measure for 
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policy stringency in a cross-country study is questionable due to the heterogeneity in the 

definitions and sampling strategies (see Johnstone et al. 2012, p. 2161). To overcome this 

problem Johnstone et al. (2012) used survey data. Based on this data they again found that 

environmental innovation is positively affected by environmental policy stringency. 

Most other studies overcome the problem of comparability by using energy prices as proxy for 

environmental regulation. Most of them focus on a single industry. Aghion et al. (2012) 

investigated the significance of energy prices for technological change by looking at the car 

industry based on patent data over a long period in time (1978 - 2007). They found that higher 

energy prices increase the propensity of ‘clean’ innovation in the car industry. Moreover they 

stated that the price effect is stronger for firms with a great stock of ‘dirty’ patents. Newell et al. 

(1999) looked at the level of product characteristics in the air-conditioning industry and found 

that energy prices had an observable effect on energetic features of the products offered for sale. 

Lanzi and Sue Wing (2011) found a positive relationship between energy prices and innovations 

in renewable technologies in the energy sector of 23 countries.  

Popp (2002) did not focus on a single industry but a single country. He looked for the USA at 

11 different technologies including supply (e.g. solar energy, fuel cells) and demand technologies 

(e.g. recovery of waste heat for energy, heat pumps) and found that energy prices and the existing 

knowledge stock have a strong and significant positive effect on innovation.  

In all these studies it is unclear whether the results also hold for other industries and/or 

countries. Only a few studies are based on data for more than one country and more than one 

industry. Johnstone et al. (2010) analyzed for five different renewable energy technologies how 

different policies (among others energy prices) did affect innovation on a certain technology. 

Verdolini and Galeotti (2011) investigated the impact of energy prices on technological 

innovation (12 technologies like in Popp 2002) for a panel of 17 countries and found a positive 

sign. However, as both studies are based on data that is either aggregated on country-level or 
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technology-level, there is a concern that there may be other macro-economic shocks correlated 

with both innovation and the energy price (see Aghion et al. 2012, p.5). 

In the study at hand we extend the existing literature in many respects. Firstly, we use energy 

prices as a proxy for environmental regulation. This allows us to generate an industry-level data 

set that covers the whole manufacturing sector (grouped into 10 industries), the most important 

countries for green invention (18 OECD countries that are responsible for more than 95% of all 

green patents and total patents worldwide) and this over a period of 30 years. Secondly, we use 

patent data to identify green and non-green inventions. Patent documents considered as covering 

green inventions are identified according to the OECD Indicator of Environmental Technologies 

(see OECD 2012) that distinguishes seven environmental areas, i.e. (a) general environmental 

management, (b) energy generation from renewable and non-fossil sources, (c) combustion 

technologies with mitigation potential, (d) technologies specific to climate change mitigation, (e) 

technologies with potential or indirect contribution to emission mitigation, (f) emission 

abatement and fuel efficiency in transportation, and (g) energy efficiency in buildings and 

lighting. If an invention can be assigned to one of these sub-groups (a to g), it is counted as a 

green invention; otherwise it is counted as a non-green invention. By using the Schmoch et al. 

(2003) concordance scheme we switch from the technology level to the industry level. This 

allows us to include control variables on the aggregation level of an industry (e.g., capital and 

number of employees). Furthermore, we reduce the potential problem of an omitted variable bias 

by controlling for industry/country specific fixed effects. Thirdly, we calculate industry specific 

energy prices what allows us to include country specific time fixed-effects. Compared with 

previous studies on a more aggregated level (e.g. country level) there is no concern that there 

could be macro-economic shocks correlated with both innovation and the energy prices that bias 

our results (see Aghion et al. 2012, p.5). 

With respect to our main variable we find that energy prices do stimulate both the intensity of 

green innovation as well as the propensity of green innovation. In our model, a 10% increase of 
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the average energy prices of the previous five years results in a 2.7% and 4.5% increase of the 

number of green patents and the share of green patents on other patents, respectively. Knowledge 

about potential political instruments to stimulate innovation in this area is of large importance. 

As our study shows, energy prices may serve as such an instrument. An increase in energy prices 

may stimulate the building of a green knowledge stock that (a) would help to achieve a country’s 

climate targets and (b) may serve as an important fundament to establish an industry in the 

cleantech market for which long-term growth is predicted. 

2 Conceptual Background and Hypotheses 

The idea that an increase in the relative price of a production factor will direct innovation efforts 

towards technologies that are less intensive in the production factor becoming more expensive 

can be attributed to Hicks (1932): “A change in the relative prices of the factors of production is 

itself a spur to invention, and to invention of a particular kind—directed to economising the use 

of a factor which has become relatively expensive.” 

This intuitively appealing assertion has been known as the induced innovation hypothesis. 

Subsequent research attempted to provide microeconomic foundations for this claim and to 

assess its relevance for traditional welfare economics (Binswanger et al., 1978, ch. 4). Induced 

innovation is generally thought to exacerbate the effects of externalities not properly taken into 

account. In particular, the exploitation of fossil fuels has undesirable side effects as CO2 

emissions negatively affect global climate. Two harmful mechanisms are at work as a result of 

not having adequately priced these energy resources (by failing to take into consideration their 

negative externalities, e.g. by charging a CO2 tax): price signals not only affect entrepreneurs’ 

choice of input combinations, given the production techniques currently available; but they also 

affect their choice of which production technologies to develop for future use.  

Taking the opposite perspective, it can be argued that taking into account induced innovation 

renders market-based policies to tackle climate change more efficient (or, more precisely, less 

costly). This is because such policies not only motivate profit-seeking firms to switch to less 
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energy-demanding technologies that are available as of today, but these policies will induce firms 

to strengthen their efforts to develop such technologies for the future (see, e.g., Carraro and 

Siniscalco (1994) for a consideration of this point). 

Porter and van der Linde (1995) even go as far as claiming that well-designed environmental 

regulation may bring about a net benefit to firms subject to such regulation. According to their 

argument, technological advances in process and product design triggered by such regulation 

often result not only in a decrease of harmful emissions (or of other undesirable ecological 

consequences), but also in new modes of production which are altogether more efficient, 

bringing about competitive gains that offset the initial private costs of complying with 

environmental policy. A controversial debate has subsequently been triggered about the general 

validity of their claims, which became to be known under the name of the Porter hypothesis. 

While we do not provide an empirical test for it in the present study, it should be noted that the 

Porter hypothesis implicitly relies on the induced innovation hypothesis. Thus, finding support 

for induced innovation can be regarded as a necessary but not sufficient condition for validating 

the claims made by Porter and van der Linde. 

We therefore formulate the two following hypothesis to be tested empirically: 

 

H1:  Energy prices are positively related to the number of ‘clean’ innovations (i.e., the 

intensity to patent in green technologies). 

H2:  Energy prices are positively related to the number of green patents relative to other 

patents (i.e., the propensity to patent in green technologies). 

 



6 
 

 

3 Description of the Data 

3.1 Measurement of green inventions based on patent statistics 

We use patent statistics in order to measure the green innovation activities of an industry. 

Although patent statistics have many disadvantages in measuring innovation output (see Aghion 

et al. 2012), they are a rather good proxy for input because there is a strong relationship between 

the number of patents and R&D expenditure (see Griliches 1990). Despite the fact that not all 

inventions are patentable and smaller firms are more reluctant to patent than larger firms, patent 

counts are still the best available source of data on innovation activities as it is readily available 

and comparable across countries (Johnstone et al. 2010). This is especially true for green 

technological activities, since the OECD (2012) provides a definition of green technologies based 

on the patent classification.  

For the paper at hand, patent information is gathered in cooperation with the Swiss Federal 

Institute of Intellectual Property (IPI). Green patents are a sub-group of patents that are selected 

according to the OECD Indicator of Environmental Technologies (see OECD 2012). Based on 

the International Patent Classification, the OECD definition distinguishes seven environmental 

areas, i.e. (a) general environmental management, (b) energy generation from renewable and 

non-fossil sources, (c) combustion technologies with mitigation potential, (d) technologies 

specific to climate change mitigation, (e) technologies with potential or indirect contribution to 

emission mitigation, (f) emission abatement and fuel efficiency in transportation, and (g) energy 

efficiency in buildings and lighting. 

In order to identify our proxy for the green knowledge output of an industry, further 

specifications and clarifications have to be made:  

a) In order to assign patents to countries, the applicant’s country of residence or the inventor’s 

country of residence may be chosen. We assigned patents according to the applicant’s address. 

Since only those inventions were selected for which at least one PCT (Patent Cooperation 
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Treaty) application was filed, the applicant's address was generally available.1 Patent applications 

are costly. Hence, it is very plausible that countries for which patent applications were filed are 

also target markets of the invention. Accordingly, there should be a direct link between these 

countries and the expected market performance. 

b) We used PATSTAT patent data in order to collect inventions (patent families). We did not 

look at single patents. Patents were grouped into patent families instead according to the 

PATSTAT procedure. This approach has the advantage that distortions caused by different 

national granting procedures and different application attitudes (USA: greater number of single 

applications for one invention compared to Europe) are mitigated. 

c) Only inventions were considered which were at minimum filed for patent protection under 

the Patent Cooperation Treaty (PCT). Fees for a PCT patent application are generally higher than 

for patent applications filed with national or regional patent authorities. Accordingly, applicants 

are expected to file inventions for patent protection under the PCT if they assume the invention 

to have enough commercial potential to compensate for the higher fees. 

d) Most of our model variables are classified by industrial sectors and not according to the 

IPC technology classes. Schmoch et al. (2003) developed a concordance scheme that links 

technology fields of the patent statistics to industry classes.2 On the basis of this concordance 

table we thus recoded our patent data into 10 manufacturing industry classes either at the NACE 

two or three-digit level for which also energy price data were available.3 In comparison with 

                                                 
1 We may also have used the inventor’s address instead. However, there may be a risk of distorting the analysis, 
especially for smaller countries, because the inventor may not live in the country where the invention occurs. 
Conversely, by using the applicant’s address the analysis may be biased by patent applications from multinationals 
for which the country of residence of the applicant possibly differs from the country where the invention occurred. In 
order to investigate if there are considerable differences, we took both the inventor’s information and the applicant’s 
information for Germany. In fact, we did not see any significant differences between the analysis based on the 
inventor’s and applicant’s address for that country. 
2 Lybbert and Zolas (2012), suggest new methods for constructing concordances. In comparing different 
concordance, they confirmed that on a relatively coarse level (e.g., 2 digit), the Schmoch et al. (2003) concordance 
enable a useful empirical policy analysis. 
3 The concordance scheme is based on patent classification and also the OECD Indicator of Environmental 
Technologies (see OECD 2012) is based on the patent classification, hence, we can easily distinguish green from 
non-green patents on the industry level. This way we can identify for each industry class the total number of green 
and non-green patents. 
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patent data at the firm level, aggregating patents4 on an industry level should reduce potential 

problems with patent waves within a firm.  

e) Our data set includes patent data from 18 countries (Australia, Austria, Belgium, Canada, 

Denmark, Finland, France, Germany, Ireland, Italy, Japan, Korea, the Netherlands, Spain, 

Sweden, Switzerland, the United Kingdom and the United States). These 18 countries account 

for more than 95% of all green inventions as well as all other inventions worldwide. The data set 

includes 10 industries that capture the whole manufacturing sector (chemicals; food and tobacco; 

machinery; basic metals; non-metallic minerals; paper, pulp and print; textile and leather; 

transport equipment; wood and wood products; non-specified industry). The patent data is 

available from 1975 onwards.5   

Figure 1 shows the aggregated development of green inventions over time. In 1975, the 

beginning of our sample period, only a few green inventions were registered. The number of 

green inventions remained very low during the following ten years. Between 1985 and 1995, the 

number slightly increased. The increase was, however, not disproportionally high compared with 

other inventions. A sharp increase in the number of green inventions can be observed since 1995. 

In 2009, 29’444 green inventions were protected worldwide. Due to generally low patent 

activity, the share of green inventions was quite instable in the beginning of our sample period. 

In a second stage, the share stabilized between 6-8%. A disproportional increase of green 

inventions can be observed after 2000. By 2009, the relative importance of green inventions 

compared with other inventions had increased to 11.6%. 

Detailed descriptive statistics for our disaggregated patent data is presented in Table 1. Nearly 

half of all green inventions are patented in the ‘machinery’ sector (49%). Furthermore, a 

considerable share is patented in the two industries ‘chemicals’ (24%) and ‘transport equipment’ 

                                                 
4 In this paper, patents and inventions are largely used synonymously.  
5 Actually the EPO (European Patent Office) was created in 1977/78. However, patent data are already available 
from 1975 onwards. The reason is that we use PCT applications, which can contain patents that are filed before 
1977. Hence PCT applications can be found in PATSTAT before EPO was created.  
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(16%). The industry ‘transport equipment’ (35%) is at the same time the most green-intensive 

industry, followed by the two industries ‘basic metals’ (14%) and ‘non-metallic minerals’ (11%). 

Among the eighteen countries that are in our sample, the United States (29%), Japan (21%) 

and Germany (18%) have the highest number of green inventions. Japan (12%) and Germany 

(11%) have also high shares of green inventions. In addition, Denmark and Canada (both 11%) 

can also be found among the countries with the highest share of green inventions. 

3.2 OECD Stan data 

In order to control for important industry characteristics beside their stock of knowledge we 

accessed the OECD STAN database (OECD 2011). We used information on labour input (total 

employment) and the capital stock (gross fixed capital formation, volumes at current prices) of 

industries relevant for our estimations.  

3.3 IEA energy data 

To analyse the impact of energy prices on innovation, we use information on energy prices 

available from the International Energy Agency’s (IEA) Energy Prices and Taxes Statistics (IEA 

2012a) for all 18 countries that are included in our sample. The price information is available for 

different energy products on a country level from 1978 onwards. To get internationally 

comparable information, we use total end-use prices (per toe6 including taxes) for the 

manufacturing sector in USD (PPP). This information is available for different energy products, 

such as electricity, light fuel oil,7 natural gas and different coal products. Descriptive information 

on energy prices by country and year can be found in Figures 2 and 3, respectively. 

                                                 
6 Tonne of oil equivalent; unit of energy for the practical expression of energy quantities (e.g., 1 MWh = 0.086 toe). 
7 The IEA does also collect price information for other oil products, such as motor gasoline. However, as the number 
of observations is very low for these variables, we could not use this price information to construct our industry 
specific energy price. Our energy price should nevertheless be representative, as the energy products that could be 
taken into account (electricity, light fuel oil, natural gas and different coal products) make up more than 70% of total 
energy consumption (on average over all industries and the whole time period; see Figure 4). This figure is quite 
impressive, as the remaining 30% do not only include motor gasoline, but also the consumption of energy products 
for which no price information is collected, such as energy from biogases or heat. 



10 
 

 

Besides the energy prices, the IEA collects data on consumption of the different energy 

products (in ktoe) on the industry level. This information is available for 10 different industries 

of the manufacturing sector and comes from the IEA World Energy Statistics and Balances (IEA 

2012b). This allows us to calculate the relative importance of a certain energy product compared 

with other products on the industry level. Information on the aggregated importance of the 

different energy products and the relative importance by industry is presented in Figures 4 and 5, 

respectively. 

To get industry specific energy prices, we finally multiply the energy prices with the relative 

importance within the industry. The industry specific energy price, is formulated as follows:  

 

௜௝௧݁ܿ݅ݎ݌_ݕ݃ݎ݁݊݁ ൌ ∑ ௜௝௧ܧ_ݓ
௦
௜ୀଵ ∗ ln	ሺ݈݁݁ܿ݁ܿ݅ݎ݌_ݕݐ݅ܿ݅ݎݐሻ௜௧௦                                 

 

where; 

 

௜௝௧ܧ_ݓ ൌ
௦

∑ ௘௟௘௖௧௥௜௖௜௧௬_௨௦௘೔ೕ೟
ೞ
೔సభ

          

 

and 

 

ݏ ∈ ሾ݈݁݁ܿݕݐ݅ܿ݅ݎݐ, ,݈݅݋	݈݁ݑ݂	ݐ݄݈݃݅ ,ݏܽ݃	݈ܽݎݑݐܽ݊ ,݈ܽ݋ܿ	݉ܽ݁ݐݏ   ሿ݈ܽ݋ܿ	݃݊݅݇݋ܿ

 

The information on energy consumption as well as on energy prices is available for electricity, 

light fuel oil, natural gas, steam coal, and cooking coal. However, due to missing values for some 

of the price variables, the prices used in our main model are based on the three products, i.e. 

electricity, LFO and natural gas. Besides the fact that there are fewer missing values for these 

three products than for the other products, these are also the three products that show the largest 
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relative importance in our sample (see Figure 4). However, we test the sensitivity of our results 

to prices that are based on other baskets of energy products as well (see Table A.7). 

3.4 Combining the data  

As only very few patent counts could be registered in the years before 1980, we restrict the 

patent sample used for regression analysis to the years 1980-2009. Accordingly, the final data set 

includes 18 countries, 10 industry classes and a period of 30 years. This yields a data set of 5400 

observations. Because of missing values for the other model variables, the number of 

observations that could be used for econometric estimations is significantly lower. 

4 Empirical Test of Hypotheses 

As stated by Jaffe and Palmer (1997) it is very difficult to specify a theoretically satisfying 

structural or reduced-form innovation equation at the industry level. Hence, we follow the 

framework of a knowledge production function as it was formulated by Griliches (1979) and 

implemented in form of a modified Cobb-Douglas model by Jaffe (1986, 1989). Similar to Jaffe 

(1989) we look at patents as the outcome variable but we differ in two respects, first we 

investigate the  industry level and secondly we can distinguish between different types of 

knowledge inputs. We formulate the following knowledge production function for an industry j, 

in country i at time t:8 

_ ,ijt ijt ijtGreen patents AL K   (1)

where Green_patents is the number of green patents (inventions), L is the labour input and K the 

capital-stock, A is a constant. The parameters   and   are elasticities with respect to labour and 

physical capital respectively. In our model we use the industries’ total number of employees as a 

proxy for labour (L) and the gross fixed capital formation in real terms is used to proxy physical 

capital (K). Ideally, one would use data on the capital stock instead of capital formation. 

                                                 
8 Other functional forms, like e.g., a translog function, would require more detailed data to describe the production 
process  (see Griliches 1979). 
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Unfortunately, this information is only available for a few countries in the STAN database. We 

thus use a flow variable as a proxy for physical capital. Both variables, L and K, should be 

positively related with innovation activity. 

Expressing (3) in logarithms yields 

ln( _ ) ln( ) ln( ) ln( ) .ijt ijt ijtGreen patents A L K     (2)

Besides the standard input factors, the current flow of green patents should also be affected by an 

industry’s stock of knowledge. To capture this effect we augment our specification with a 

variable that measures an industry’s stock in green patents (Green_stock).9 Following Cockburn 

and Griliches (1988) and Aghion et al. (2012), the patent stock is calculated using the perpetual 

inventory method. Following this method, the stock is defined as 

1_ (1 ) _ _ ,ijt ijt ijtGreen stock Green stock Green patents     (3)

where   is the depreciation rate of R&D capital.10 According to most of the literature, we take 

  to be equal to 15% (see Keller 2002, Hall et al. 2005). However, we test the sensitivity of our 

results to other depreciation rates as well (see Table A.8). To capture potential effects of 

available knowledge in other than green technologies, we also control for the stocks of patents 

that are not classified as green (Other_stock). The stock of other patents is calculated in the same 

way as the stock of green patents. In line with previous literature (see, e.g., Aghion et al. 2012, 

Stucki and Woerter 2012) we expect that both green specific knowledge and other than green 

(henceforth: “traditional”) knowledge do stimulate current green innovation activities. 

Finally, to test the impact of energy prices, a variable that measures the industry specific 

energy prices (Energy_price) is included in this innovation model. The augmented specification 

is given by: 

                                                 
9 Popp (2002) finds empirical evidence that failing to properly take into account measures for existing knowledge 
stocks may severely bias estimates of the innovation inducing effect of energy prices. 
10 Due to the low number of patents before 1980, we restricted our sample period to the years 1980-2009. However, 
patent applications before 1980 were used to calculate the patent stocks. The initial value of the patent stock is set at 
Green_stock1975/(δ+g), where g is the pre-1975 growth in patent stock that is assumed to be 15%. 
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1 1 1

1 1

ln( _ ) ln( ) ln( ) ln( ) ln( _ )

ln( _ ) ln( _ ) ,

ijt ijt ijt ijt

ijt ijt it ij ijt

Green patents A L K Green stock

Other stock Energy price

  

    
  

 

   

    
 (4)

where   and   are the coefficients of knowledge stocks,   is the coefficient of energy prices 

and ε is the stochastic error term. As patent variables may contain a value of zero, we used 

ln(1+patents) to avoid problems with the logarithm (see Wooldridge 2002, p. 185). To deal with 

the potential problem of reverse causality the independent variables are introduced with a lag of 

one year.  

To test the robustness of the price effect we use different dynamic specifications for energy 

prices, i.e. we use alternative lags (2-5 year lag), we construct a weighted average of past prices 

as proposed by Popp (2002)11 and we calculate a moving average of the energy prices of the 

previous five years. 

To control for correlated unobserved heterogeneity, we include country specific industry fixed 

effects ( ). Furthermore, to reduce the risk of an omitted variable bias from country specific 

shocks, we include country specific time fixed effects (μ). As stated in Aghion et al. (2012), the 

increase of energy prices, e.g., might be correlated with country specific subsidies for green 

innovation. Accordingly, the effect of energy prices may represent an indirect effect of subsidies 

on green innovation, and not a direct effect of prices as suggested above. The fixed effect μ 

captures such country specific shocks. 

As we are not just interested in the effect of energy prices on the total number of green patents 

(i.e., the intensity of green patent activities; see H1), but also in the effect on the development of 

the number of green patents relative to other patents (i.e., the propensity to patent in green 

technologies; see H2), we alternatively estimate our innovation model with a different dependent 

                                                 
11 As in Popp (2002), this energy price is based on an adaptive expectation model, in which expected future energy 

prices are a weighted average of past prices: 
0

,
n k

ijt ijt kk
P P 

  where ψ, the adjustment coefficient that represents 

the weights placed on past observations, is 0.83, and k takes the values 1 to n, while n represents the period under 
investigation (see Aghion et al. 2012 for a similar procedure). 
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variable that measures the difference between the logarithms of the number of green patents and 

other patents (share of green patents on other patents). Our second model thus reads as follows: 

1 1

1 1 1

ln( _ ) ln( _ ) ln( ) ln( ) ln( )

ln( _ ) ln( _ ) ln( _ )

.

ijt ijt ijt ijt

ijt ijt ijt

it ij ijt

Green patents Other patents A L K

Green stock Other stock Energy price

 

  

  

 

  

   

  

  

 (5)

5 Estimation Results 

5.1 Main results 

The main results are presented in Tables 3 and 4. Table 3 shows OLS log linear fixed-effects 

estimations for the number of green patents.12 The columns with uneven numbers show the 

results of the full model as specified in equation 6 for different dynamic specifications of the 

price variable. The columns with even numbers show the results for the same estimations without 

capital control (reduced model), which significantly increases the number of observations. To 

test whether this modification does lead to an omitted variable bias, Table A.3 shows the results 

for the reduced models based on the same observations that are available in the full model. As 

the results for the energy price variable do only marginally differ between these two models, we 

conclude that at least the result for the energy price should not be affected by an omitted variable 

bias in the reduced models. Table 4 shows the results for the model with the log share of green 

patents as dependent variable, as specified in equation 7. 

On the whole, the results for the control variables are in line with general expectations. Labour 

input (L) and physical capital (K) tend to be positively correlated with the number of green 

patents. However, we cannot observe a significant effect for these two variables with respect to 

the share of green patents. The propensity to patent in green technologies is neither affected by 

labour input nor by physical capital input. As expected a larger stock of green knowledge does 

stimulate current activities in green innovation. Furthermore, we find in Table 3 that knowledge 

                                                 
12 Our dependent variable is the natural logarithm of the number of green patents and the number of green patents is 
a count variable. Accordingly, robustness tests using count data models are appropriate. Such alternative estimates 
are presented in Table A.9. 
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in other than green technologies serves as a resource for green innovation as well – the effect of 

Other_stock on the number of green patents is significantly positive. The positive effect of green 

knowledge on current green innovation activities is, however, significantly larger than the 

positive effect of traditional knowledge. The effect of Other_stock on the share of green patents 

is significantly negative (see Table 4). Thus, it seems that due to opportunity costs, the relative 

impact of Other_stock on green innovation is smaller than the impact on other than green 

innovation. 

We turn attention now to the main focus of our paper, the impact energy prices have on green 

innovation. In line with hypothesis H1 we find that larger energy prices do stimulate current 

green innovation activities. The impact of energy prices increases with an increasing lag between 

energy prices and innovation activities.13 

Hypothesis H2 is confirmed as well, as energy prices have a significantly positive impact on 

the relative share of green innovation (see Table 4). Accordingly, energy prices do positively 

affect both, the intensity and the propensity of green innovation. In our model, a 10% increase of 

the average energy price of the previous five years results in a 2.7% and 4.5% increase of the 

number of green patents and the share of green patents, respectively. Does this increase in the 

propensity of green innovation come at the cost of other than green innovation? This is what the 

relatively large elasticity with respect to the share of green invention (4.5% vs. 2.7%) indicates. 

And in fact, we find for most specifications a significant negative effect of energy prices on other 

than green innovation (see Table A.5). 

As described in the introduction, our model is based on a broader data set than most previous 

studies. It would thus be interesting to analyse how this fact does affect the impact of the energy 

prices. As previous models either include different control variables or even use different 

                                                 
13 To test whether the differences arising from different time lags for the price variable in Table 3 are driven by the 
different lag structure or the different samples, Table A.4 shows the results for the same estimates, but with the same 
observations across the models. As these results do only marginally differ from previous results, we conclude that 
differences across models are driven by dynamic effects.   
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measures for green innovation, a direct comparison of the marginal effects of energy prices is 

hardly possible. Nevertheless, a comparison can show evidence for the question whether the 

impact of energy prices differs substantially among countries and industries. Based on US-data 

Popp (2002) identifies an effect of energy prices on the share of green patents in total patents of 

3.4% (long run elasticity). Though we defined our share variable differently, the size of the effect 

is quite similar to the 5.2% that we find with respect to the share of green innovation in other 

innovation when using comparable energy prices14 (see columns 11 and 12 of Table 4). As our 

result is based on a data set that includes 13 countries, we thus conclude that the effect found for 

the U.S. by Popp (2002) is representative for the group of countries we consider here. Aghion et 

al. (2012) analyze the effect of fuel prices on different innovation variables for the auto industry. 

Based on a slightly different model specification that also controls for other types of knowledge 

stocks, they identified elasticities of 0.97 and -0.57 for the number of green and dirty patents, 

respectively. These elasticities are considerably larger than the figures we find for the total 

manufacturing sector (based on a lag structure of one year we find elasticities of 0.12 and -0.14, 

respectively). Accordingly, it seems that the dependency on energy prices in the auto industry is 

larger than the dependency in the other manufacturing industries. To sum up, the comparison of 

our results with the results of these two studies indicate that variation in price elasticities is larger 

across industries than across countries.s 

5.2 Robustness tests 

We made comprehensive tests to check the robustness of our main results presented in Tables 3 

and 4. All these tests are based on the models without the capital flow variable and using moving 

averages of the energy prices of the previous five years.  

Estimates for different subcategories of green innovation 

                                                 
14 Estimates based on a weighted average energy price with an adjustment coefficient of 0.83. 
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Our estimates are so far based on a quite broad definition of green inventions. Obviously, energy 

price shocks should, however, primarily affect inventions that are somehow related to energy 

reduction. To deal with this assertion, we estimate our previous model (column 14 of Table 3) 

separately for the seven environmental areas that are included in the OECD definition (see 

OECD 2012). The respective estimates are presented in Table A.6. The estimation results show 

that elasticities are larger for categories that we would suppose are more directly related to 

energy. Accordingly, the elasticity is largest for innovations in ‘technologies with potential or 

indirect contribution to emission mitigation’ (e.g., energy storage) and ‘energy generation from 

renewable and non-fossil sources’. More general green innovation such as innovation dealing 

with ‘technologies specified to climate change mitigation’ (e.g., CO2 capturing) is not 

significantly affected by energy price shocks. Nevertheless, our overall results seem to be quite 

representative, as the effect of energy prices is significantly positive for all other subcategories, 

and does only marginally vary across the different groups (elasticities between 0.24 and 0.38 for 

the other six categories).  

Alternative price variables 

Despite the fact that our price variable includes the prices of the three most important energy 

products, the construction of this variable may affect the results of our estimates. To test the 

robustness of our results with respect to the construction of the price variable, we alternatively 

estimated our main model of Tables 3 and 4 with price variables that are based on alternative 

baskets of energy products. As there are missing values for some product-specific energy prices, 

enlarging the price basket significantly reduces the number of observations that is available for 

the model estimation.15 To get comparable results for the different price baskets, we estimate all 

models for the same set of observations. The respective estimation results are presented in Table 

                                                 
15 While 3’448 observations are available when only the two products electricity and light fuel oil are included in the 
price basket, only 1’203 observations are available when we additionally include the three products natural gas, 
steam coal and coking coal. 
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A.7. To be able to compare these results with previous results, columns (2) and (8) show the 

results for the previous estimates based on the smaller sample. The fact that the price elasticities 

of these estimates only marginally differ from previous estimates (0.36 vs. 0.34 for green 

intensity and 0.55 vs. 0.48 for green propensity) indicates that the reduction of the sample size 

does not significantly affect our results. 

The estimates for the different price baskets show that the elasticities of our main models 

represent the lower limit. For all other price baskets the price elasticities are significantly larger. 

The largest elasticities can be observed for prices based on the three products electricity, light 

fuel oil and steam coal. Based on this basket we identify elasticities of 0.98 and 1.25 for the 

number of green patents and the share of green patents, respectively (see columns 3 and 9). The 

elasticities are lowest when natural gas prices are included in the basket. Due to the relatively 

low prices of natural gas (see Figure 3) and its relatively high weight compared with other energy 

products (see Figure 4), the price mixes that include natural gas tend to be lower. Accordingly, a 

relative increase in these prices does lead to a lower absolute increase in energy costs than an 

increase in other price mixes. Other factors that may affect the different elasticities across the 

different price mixes may be different factor substitutabilities. For example it may be 

comparatively difficult for an industry to replace electricity by another product when electricity 

prices increase.  

Testing the robustness of the stock variables 

In our main models (Tables 3 and 4) we applied a depreciation rate of 15% in order to calculate 

knowledge stocks. Table A.8 (columns 1 to 4) presents the results for alternative depreciation 

rates of 10% and 30%. The results are relatively independent of the chosen depreciation rate. The 

coefficients are similar and directions of the effects are identical. 

Checking for outliers 
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Columns (5) to (8) of Table A.8 show the estimation results with regard to outliers. The 

distribution of inventions across industries is highly heterogeneous. Consequently we run our 

estimation excluding the top 1% of performers and the top 5% of the performers, respectively.16 

This only marginally affected our results. We thus conclude that our results are not driven by 

outliers. 

Dealing with special characteristics of our data 

To deal with the count data characteristics of the green innovation variable, column (1) of Table 

A.9 shows the results for the fixed-effects Poisson model with robust standard errors as 

recommended by Allison and Waterman (2002) to correct for over-dispersion. Unfortunately, 

this procedure does not allow the inclusion of country specific time fixed effects. However, the 

estimation results with respect to energy prices is only marginally affected by this alternative 

estimation procedure. The effect of energy prices on green innovation remains statistically 

significant and positive, and the coefficient is only slightly smaller (0.20 vs. 0.34). 

Column (2) of Table A.9 shows an OLS model that includes pre-sample fixed effects as proposed 

by Blundell et al. (1995) in order to deal with unobserved heterogeneity in the presence of lagged 

endogenous variables. In doing so we add the average level of patenting over the pre-sample 

period 1975-1985 for both, green and other patents (both in logs), as well as two binary variables 

that measure whether an industry had any patent applications at all in the respective period. This 

procedure does again slightly reduce the size of the effect of energy prices (0.15 vs. 0.34); the 

effect remains, however, statistically significant and positive. 

                                                 
16 Our main estimates presented in Tables 3 and 4 are based on 144 groups. To check for outliers, we excluded all 
groups with an average clean or dirty patent stock greater THAN or equal to the top 1% and 5% of the groups, 
respectively. All in all, we thus dropped two and ten groups that account for 1.5% and 6.6% of the observations, 
respectively. 
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6 Conclusions 

Based on industry-level panel data, the paper at hand investigates the determinants of green 

patent applications of an industry. While the main focus is on the impact of energy prices, our 

model shows several other interesting results. Firstly, we find that an available knowledge stock 

serves as innovation relevant resource for green innovation independent whether it is green 

specific knowledge or knowledge in traditional technologies. Secondly, as a large knowledge 

stock in traditional technologies represents larger opportunity costs with respect to green 

innovation, the effect of traditional knowledge on current green innovation is significantly 

smaller than the effect of green knowledge. Furthermore, the effect of traditional knowledge on 

the share of green patents is significantly negative. With respect to our main variable we find that 

energy prices do stimulate both, the intensity of green innovation as well as the propensity of 

green innovation. In our model, a 10% increase of the average energy prices of the previous five 

years results in a 2.7% and 4.5% increase of the number of green patents and the share of green 

patents, respectively. This is not a new result. Certain previous empirical studies came to a quite 

similar finding. However, in contrast to previous studies, our results are more general, as they are 

based on a broader basis. While most previous studies focused on certain industries or countries, 

our data set includes the whole manufacturing sector and the most important countries for green 

innovation. Furthermore, in contrast to studies that are based on aggregated data, we reduced the 

problems of an omitted-variable bias by calculating industry-specific energy prices.  

Despite a large future market potential, firms are probably not willing by themselves to invest 

in green technologies, as green innovation is still negatively related to economic performance 

(see Soltmann et al. 2012). Furthermore, free-riding possibilities in green technologies seem to 

be limited (see Stucki and Woerter 2012). Accordingly, knowledge about potential policy 

instruments to stimulate innovation in this area is of large importance. As our study shows, 

energy prices may serve as such an instrument. An increase in energy prices may stimulate the 

building of a green knowledge stock that (a) would help to achieve a country’s climate targets 
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and (b) may serve as an important fundament to establish an industry in the cleantech market for 

which long-term growth is predicted. Even more in Switzerland an increase in energy prices may 

be an important instrument. Despite the strong performance in general innovation activities (see, 

e.g., SECO 2012), the green innovation machine has not been activated so far. The share of green 

patents in other patents is just 5.3% for the years 1975-2009 (see Table 1). This is among the 

lowest values among all 18 countries in our sample.  

When comparing our results with the results of previous studies, we found that price 

elasticities seem to vary across industries. Accordingly, energy prices do not seem to be equally 

suitable as an instrument to stimulate green innovation in different industries. Due to the limited 

number of observations that is available in our data set, it was unfortunately not possible for us to 

compare price elasticities across industries. However, to increase the efficiency of energy price 

regulations it seems to be an interesting task for future research to identify such difference across 

industries. 
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Figure 1: Development of green patents worldwide, 1975-2009 

 
 

Source: Own calculations. 
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Table 1: Number of green and other patents (inventions) by industry and country 

Period 1975-2009 

Type of patent Other Green Green vs. Other 

  

Number of  
other 

patents 

Relative 
share  

in total 
other  

patents 

Number 
of  

green 
patents 

Relative 
share 

in total 
green 

patents 

Share of  
green patents in  

other patents 

Industry           

Chemicals 1174189 30.7% 75005 24.3% 6.4% 

Food and tobacco 57745 1.5% 2299 0.7% 4.0% 

Machinery 2057737 53.8% 151000 49.0% 7.3% 

Basic metals 51937 1.4% 7058 2.3% 13.6% 

Non-metallic minerals 90436 2.4% 9936 3.2% 11.0% 

Paper, pulp and print 23630 0.6% 1439 0.5% 6.1% 

Textile and leather 28133 0.7% 949 0.3% 3.4% 

Transport equipment 145020 3.8% 50350 16.3% 34.7% 

Wood and wood products 5213 0.1% 189 0.1% 3.6% 

Non-specified industry 190613 5.0% 10103 3.3% 5.3% 

Country       

Australia 62475 1.6% 5720 1.9% 9.2% 

Austria 35787 0.9% 3479 1.1% 9.7% 

Belgium 40323 1.1% 2586 0.8% 6.4% 

Canada 85872 2.2% 8978 2.9% 10.5% 

Switzerland 114720 3.0% 6042 2.0% 5.3% 

Germany 490347 12.8% 55373 18.0% 11.3% 

Denmark 38944 1.0% 4276 1.4% 11.0% 

Spain 28403 0.7% 2520 0.8% 8.9% 

Finland 50947 1.3% 3440 1.1% 6.8% 

France 203523 5.3% 17130 5.6% 8.4% 

United Kingdom 226841 5.9% 15172 4.9% 6.7% 

Ireland 12425 0.3% 637 0.2% 5.1% 

Italy 65926 1.7% 4640 1.5% 7.0% 

Japan 565774 14.8% 65906 21.4% 11.6% 

Korea 86305 2.3% 7267 2.4% 8.4% 

Netherlands 130982 3.4% 8794 2.9% 6.7% 

Sweden 111130 2.9% 6977 2.3% 6.3% 

United States 1473929 38.5% 89391 29.0% 6.1% 

Total 3824653 100% 308328 100% 8.1% 
 
Notes: Data is based on own calculations; these statistics are based on 35 cross-sections, 18 
countries and 10 industries (total of 6’300 observations); the relative share in total green patents is 
calculated as the share of an industry’s/country’s number of green patents relative to the number of all 
green patents in our sample (sum of green patents over all industries/countries in the sample); the share 
of green patents in other patents is defined as an industry’s/ country’s share of green patents relative to 
its number of other patents. 
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Figure 2: Energy prices (PPP adjusted) for electricity, light fuel oil, natural gas, steam coal and 
coking coal (per toe) by year, 1978-2009 
 

 
 
Source: IEA (2012a). 

 
 
Figure 3: Average energy prices (per tonne of oil equivalent, PPP adjusted) for the three most 
used energy products electricity, light fuel oil and natural gas (see Figure 4) by country, 1978-
2009 
 

 
 
Notes: As the different price information is not available for all countries over the whole sample 
period, some of the figures are not directly comparable across countries and products. Natural gas 
prices for Sweden are for example only available for the years 2007-2009, and are thus not directly 
comparable with the respective prices for light fuel oil that are available for the whole sample 
period. Other prices averages with few observations are: Australian LFO price (6 years), Danish 
natural gas price (4 years) and Korean natural gas price (6 years); Source: IEA (2012a). 
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Figure 4: Share of total energy consumption by product, 1978-2009 
 

 
 
Source: IEA (2012b). 

 
 
Figure 5: Relative share of top three energy products by industry, 1978-2009 
 

 
 
Source: IEA (2012b). 
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Table 2: Variable definition and measurement 

Variable Definition/measurement Source 
Dependent variable     
Green_patentsijt Number of green patents own calculations 

Other_patentsijt Number of patents that are not classified as green own calculations 

Independent variable     
Lijt Number of persons engaged (total employment) OECD STAN 

Kijt Gross fixed capital formation, volumes (current price value) OECD STAN 

Green_stockijt Stock of green patents own calculations 

Other_stockijt Stock of patents that are not classified as green own calculations 

Energy_priceijt 
Industry specific energy price based on electricity, light fuel oil  
and natural gas prices, PPP 

IEA 

Popp_energy_priceijt 

Weighted average energy prices as in Popp (2002) for the 
whole sample period from 1978 onwards with an adjustment 
coefficient of 0.83 (see Aghion et al. 2012 for a similar 
procedure). 

IEA 

Moving_average_ 
energy_priceijt 

Moving average of the energy prices of the previous five years. IEA 
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Table 3: Estimation results for green patent flow 
 

 

 
Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the industry-country level (clustered sandwich 
estimator) are in brackets under the coefficients; ***, **, * denotes statistical significance at the 1%, 5% and 10% test level, respectively. 

  

Estimation method OLS log linear fixed-effects regression 

Period 1981-2009 1984-2009 

Dependent variable ln(Green_patents)ijt 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 
ln(L)ijt-1 0.068 0.096 0.072 0.101 0.077 0.111* 0.081 0.130* 0.055 0.117* -0.030 0.035 0.028 0.098 
  (0.080) (0.067) (0.078) (0.065) (0.083) (0.065) (0.082) (0.067) (0.079) (0.066) (0.088) (0.072) (0.084) (0.068) 
ln(K)ijt-1 0.125** 0.113** 0.111** 0.118** 0.117** 0.132** 0.119** 
  (0.052) (0.052) (0.056) (0.058) (0.056) (0.054) (0.059) 
ln(Green_stock)ijt-1 0.617*** 0.613*** 0.603*** 0.599*** 0.579*** 0.580*** 0.567*** 0.564*** 0.551*** 0.552*** 0.590*** 0.591*** 0.550*** 0.551*** 
  (0.035) (0.034) (0.035) (0.035) (0.036) (0.035) (0.040) (0.037) (0.040) (0.037) (0.041) (0.039) (0.047) (0.043) 
ln(Other_stock)ijt-1 0.150*** 0.147*** 0.158*** 0.155*** 0.139*** 0.147*** 0.151*** 0.154*** 0.180*** 0.174*** 0.172*** 0.164*** 0.158*** 0.164*** 
  (0.047) (0.041) (0.047) (0.043) (0.050) (0.045) (0.057) (0.047) (0.065) (0.052) (0.051) (0.044) (0.059) (0.050) 
ln(Energy_price)ijt-1 0.115 0.205** 
  (0.089) (0.087) 
ln(Energy_price)ijt-2 0.119 0.200** 
  (0.091) (0.087) 
ln(Energy_price)ijt-3 0.164* 0.223** 
  (0.091) (0.087) 
ln(Energy_price)ijt-4 0.201** 0.222*** 
  (0.084) (0.080) 
ln(Energy_price)ijt-5 0.277*** 0.265*** 
  (0.100) (0.087) 
ln(Popp_energy_price)ijt-1 0.286 0.391** 
  (0.174) (0.162) 
ln(Moving_average_energy_price)ijt-1 0.268* 0.342** 
  (0.143) (0.141) 
Constant -4.475*** -2.812*** -4.483*** -2.920*** -4.657*** -3.179*** -5.073*** -3.436*** -5.307*** -3.540*** -4.296*** -2.984*** -4.985*** -3.880***
  (1.054) (0.893) (1.037) (0.878) (1.061) (0.878) (1.133) (0.886) (1.154) (0.870) (1.146) (1.121) (1.190) (1.092) 

Country specific time fixed effects yes yes yes yes yes yes yes yes yes yes yes yes yes yes 

Country specific industry  
fixed effects 

yes yes yes yes yes yes yes yes yes yes yes yes yes yes 

N 2293 3142 2227 3051 2181 2969 2146 2899 2099 2829 1920 2725 1962 2669 
Groups 126 174 126 174 116 164 116 154 116 154 105 143 116 144 
R2 within 0.77 0.80 0.75 0.79 0.73 0.78 0.72 0.77 0.70 0.75 0.76 0.80 0.71 0.76 
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Table 4: Estimation results for relative patenting 
 
Estimation method OLS log linear fixed-effects regression 
Period 1981-2009 1984-2009 
Dependent variable ln(Green_patents)ijt - ln(Other_patents)ijt 
  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) 
ln(L)ijt-1 -0.052 -0.117 -0.045 -0.112 -0.045 -0.106 -0.039 -0.080 -0.066 -0.097 -0.158 -0.185* -0.093 -0.111 
  (0.103) (0.088) (0.101) (0.088) (0.100) (0.084) (0.096) (0.081) (0.095) (0.076) (0.116) (0.095) (0.102) (0.085) 
ln(K)ijt-1 0.040 0.021 0.023 0.018 0.004 0.039 0.022 
  (0.070) (0.069) (0.072) (0.070) (0.070) (0.068) (0.068) 
ln(Green_stock)ijt-1 0.377*** 0.365*** 0.363*** 0.350*** 0.342*** 0.338*** 0.326*** 0.320*** 0.303*** 0.305*** 0.346*** 0.333*** 0.295*** 0.292*** 
  (0.044) (0.042) (0.043) (0.042) (0.043) (0.044) (0.046) (0.045) (0.047) (0.045) (0.049) (0.046) (0.051) (0.051) 
ln(Other_stock)ijt-1 -0.313*** -0.368*** -0.302*** -0.356*** -0.280*** -0.337*** -0.227*** -0.300*** -0.231*** -0.294*** -0.301*** -0.359*** -0.227*** -0.297***
  (0.061) (0.054) (0.060) (0.056) (0.064) (0.057) (0.074) (0.063) (0.082) (0.065) (0.067) (0.058) (0.080) (0.068) 
ln(Energy_price)ijt-1 0.265** 0.345*** 
  (0.131) (0.123) 
ln(Energy_price)ijt-2 0.253* 0.323*** 
  (0.130) (0.122) 
ln(Energy_price)ijt-3 0.305** 0.361*** 
  (0.134) (0.123) 
ln(Energy_price)ijt-4 0.358*** 0.367*** 
  (0.131) (0.114) 
ln(Energy_price)ijt-5 0.408*** 0.367*** 
  (0.142) (0.116) 
ln(Popp_energy_price)ijt-1 0.519** 0.615** 
  (0.257) (0.238) 
ln(Moving_average_energy_price)ijt-1 0.450** 0.481** 
  (0.213) (0.194) 
Constant -3.007** -1.823 -3.007** -1.887 -3.210** -2.160* -3.709** -2.683** -3.469** -2.524** -2.986* -2.241 -3.810** -3.101** 
  (1.401) (1.172) (1.387) (1.169) (1.387) (1.107) (1.427) (1.093) (1.499) (1.045) (1.649) (1.524) (1.580) (1.408) 

Country specific time fixed effects yes yes yes yes yes yes yes yes yes yes yes yes yes yes 

Country specific industry  
fixed effects 

yes yes yes yes yes yes yes yes yes yes yes yes yes yes 

N 2293 3142 2227 3051 2181 2969 2146 2899 2099 2829 1920 2725 1962 2669 
Groups 126 174 126 174 116 164 116 154 116 154 105 143 116 144 
R2 within 0.50 0.50 0.48 0.48 0.47 0.47 0.43 0.44 0.43 0.43 0.51 0.51 0.43 0.44 

 
Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the industry-country level (clustered sandwich 
estimator) are in brackets under the coefficients; ***, **, * denotes statistical significance at the 1%, 5% and 10% test level, respectively.
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APPENDIX 

 
Table A.1: Identification of a possible omitted variable bias (estimates of Table 3 

without capital variable but same observations) 
Estimation method OLS log linear fixed-effects regression 

Period 1981-2009 1984-2009 

Dependent variable ln(Green_patents)ijt 

  (1) (2) (3) (4) (5) (6) (7) 

ln(L)ijt-1 0.150* 0.145* 0.148* 0.156* 0.123 0.054 0.103 

  (0.079) (0.076) (0.080) (0.083) (0.080) (0.087) (0.085) 

ln(Green_stock)ijt-1 0.622*** 0.607*** 0.584*** 0.573*** 0.557*** 0.597*** 0.557*** 

  (0.034) (0.034) (0.036) (0.040) (0.040) (0.040) (0.046) 

ln(Other_stock)ijt-1 0.154*** 0.163*** 0.144*** 0.157*** 0.189*** 0.179*** 0.166*** 

  (0.047) (0.047) (0.051) (0.057) (0.066) (0.051) (0.059) 

ln(Energy_price)ijt-1 0.104 

  (0.089) 

ln(Energy_price)ijt-2 0.112 

  (0.091) 

ln(Energy_price)ijt-3 0.161* 

  (0.091) 

ln(Energy_price)ijt-4 0.202** 

  (0.084) 

ln(Energy_price)ijt-5 0.283*** 

  (0.099) 

ln(Popp_energy_price)ijt-1 0.274 

  (0.173) 

ln(Moving_average_energy_price)ijt-1 0.269* 

  (0.141) 

Constant -2.884*** -3.013*** -3.190*** -3.604*** -3.786*** -2.519** -3.384*** 

  (1.034) (0.998) (1.004) (1.062) (1.034) (1.159) (1.123) 

Country specific time fixed effects yes yes yes yes yes yes yes 

Country specific industry  
fixed effects 

yes yes yes yes yes yes yes 

N 2293 2227 2181 2146 2099 1920 1962 

Groups 126 126 116 116 116 105 116 

R2 within 0.77 0.75 0.73 0.72 0.70 0.76 0.71 

 
Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the 
industry-country level (clustered sandwich estimator) are in brackets under the coefficients; ***, **, * denotes statistical 
significance at the 1%, 5% and 10% test level, respectively. 
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Table A.2: Identification of pure dynamic effects (same observations for all models) 
Estimation method OLS log linear fixed-effects regression 

Period 1981-2009 1984-2009 

Dependent variable ln(Green_patents)ijt 

  (1) (2) (3) (4) (5) (6) (7) 

ln(L)ijt-1 0.085 0.086 0.083 0.082 0.079 0.067 0.077    

  (0.075) (0.075) (0.075) (0.074) (0.074) (0.075) (0.074)    

ln(Green_stock)ijt-1 0.553*** 0.553*** 0.552*** 0.551*** 0.550*** 0.546*** 0.548*** 

  (0.046) (0.046) (0.046) (0.046) (0.046) (0.046) (0.046)    

ln(Other_stock)ijt-1 0.174*** 0.176*** 0.179*** 0.181*** 0.185*** 0.190*** 0.185*** 

  (0.058) (0.058) (0.057) (0.058) (0.058) (0.058) (0.058)    

ln(Energy_price)ijt-1 0.164                 

  (0.100)   

ln(Energy_price)ijt-2   0.152                 

    (0.102)                 

ln(Energy_price)ijt-3   0.185*   

    (0.096)                 

ln(Energy_price)ijt-4   0.192**                 

    (0.084)   

ln(Energy_price)ijt-5   0.240***                 

    (0.089)                 

ln(Popp_energy_price)ijt-1   0.460**                 

    (0.226)   

ln(Moving_average_energy_price)ijt-1   0.331**  

    (0.153)    

Constant -2.602** -2.464** -2.698*** -2.674*** -2.879*** -3.672*** -3.562*** 

  (1.008) (0.983) (0.958) (0.922) (0.925) (1.301) (1.173)    

Country specific time fixed effects yes yes yes yes yes yes yes 

Country specific industry  
fixed effects 

yes yes yes yes yes yes yes 

N 2299 2299 2299 2299 2299 2299 2299    

Groups 125 125 125 125 125 125 125 

R2 within 0.76 0.76 0.76 0.76 0.76 0.76 0.76    

 
Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the 
industry-country level (clustered sandwich estimator) are in brackets under the coefficients; ***, **, * denotes statistical 
significance at the 1%, 5% and 10% test level, respectively. 
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Table A.3: Estimation results for other patent flow 
Estimation method OLS log linear fixed-effects regression 

Period 1981-2009 1984-2009 

Dependent variable ln(Other_patents)ijt 

  (1) (2) (3) (4) (5) (6) (7) 

ln(L)ijt-1 0.213*** 0.213*** 0.216*** 0.210*** 0.214*** 0.220*** 0.209*** 

  (0.057) (0.062) (0.063) (0.066) (0.062) (0.064) (0.071)    

ln(Green_stock)ijt-1 0.248*** 0.248*** 0.242*** 0.243*** 0.247*** 0.258*** 0.259*** 

  (0.026) (0.028) (0.031) (0.033) (0.034) (0.030) (0.036)    

ln(Other_stock)ijt-1 0.515*** 0.511*** 0.484*** 0.454*** 0.467*** 0.522*** 0.462*** 

  (0.036) (0.039) (0.041) (0.046) (0.043) (0.038) (0.051)    

ln(Energy_price)ijt-1 -0.140*   

  (0.071)   

ln(Energy_price)ijt-2   -0.123*   

    (0.067)   

ln(Energy_price)ijt-3   -0.138**   

    (0.068)   

ln(Energy_price)ijt-4   -0.144**   

    (0.066)   

ln(Energy_price)ijt-5   -0.102*   

    (0.060)   

ln(Popp_energy_price)ijt-1   -0.224*   

    (0.132)   

ln(Moving_average_energy_price)ijt-1   -0.139    

    (0.091)    

Constant -0.989 -1.034 -1.019 -0.753 -1.016 -0.744 -0.779    

  (0.701) (0.746) (0.795) (0.869) (0.821) (0.906) (0.972)    

Country specific time fixed effects yes yes yes yes yes yes yes 

Country specific industry 
yes yes yes yes yes yes yes 

fixed effects 

N 3142 3051 2969 2899 2829 2725 2669 

Groups 174 174 164 154 154 143 144 

R2 within 0.91 0.91 0.91 0.90 0.90 0.91 0.90 

 
Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the 
industry-country level (clustered sandwich estimator) are in brackets under the coefficients; ***, **, * denotes statistical 
significance at the 1%, 5% and 10% test level, respectively. 
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Table A.4: Estimates for different types of green innovation 
Estimation method OLS log linear fixed-effects regression 

Period 1984-2009 

Dependent variable ln(Specific_green_patents)ijt 

Type of green patents: 
General environmental 

management 

Energy generation from 
renewable and non-fossil 

sources 

Combustion technologies 
with mitigation potential 

Technologies specific to  
climate change mitigation 

Technologies with potential 
or indirect contribution 
 to emission mitigation 

Emission abatement and fuel 
efficiency in transportation 

Energy efficiency in  
buildings and lighting 

  (1) (2) (3) (4) (5) (6) (7) 

ln(L)ijt-1 0.053 0.149 0.036 -0.006 -0.001 -0.007 0.031    

  (0.070) (0.103) (0.044) (0.039) (0.075) (0.080) (0.061)    

ln(Specific_green_stock)ijt-1 0.460*** 0.526*** 0.461*** 0.593*** 0.580*** 0.547*** 0.554*** 

  (0.044) (0.054) (0.044) (0.050) (0.040) (0.039) (0.042)    

ln(Specific_other_stock)ijt-1 0.198*** 0.097** 0.037 0.034** 0.072* -0.012 0.078**  

  (0.052) (0.041) (0.029) (0.017) (0.039) (0.041) (0.037)    

ln(Moving_average_energy_price)ijt-1 0.239* 0.379*** 0.328*** 0.074 0.382*** 0.342*** 0.255**  

  (0.135) (0.133) (0.103) (0.087) (0.115) (0.116) (0.120)    

Constant -2.851** -4.429*** -2.558*** -0.638 -2.746** -1.851 -2.442**  

  (1.099) (1.369) (0.734) (0.699) (1.111) (1.185) (1.008)    

Country specific time fixed effects yes yes yes yes yes yes yes 

Country specific industry  
fixed effects 

yes yes yes yes yes yes yes 

N 2669 2669 2669 2669 2669 2669 2669    

Groups 144 144 144 144 144 144 144 

R2 within 0.68 0.70 0.52 0.64 0.70 0.65 0.67    

 
Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the industry-country level (clustered sandwich estimator) are in brackets under 
the coefficients; ***, **, * denotes statistical significance at the 1%, 5% and 10% test level, respectively. 
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Table A.5: Estimates based on alternative price variables (same observations for all models) 
Estimation method OLS log linear fixed-effects regression 

Period 1984-2009 

Dependent variable ln(Green_patents)ijt ln(Green_patents)ijt - ln(Other_patents)ijt 

Products included in price basket 
electricity,  

light fuel oil 

electricity, 
 light fuel 

oil,  
natural gas 

electricity, 
light fuel oil, 
steam coal 

electricity, light 
fuel oil, natural 
gas, steam coal 

electricity, light 
fuel oil, steam 

coal, coking coal 

electricity, light fuel 
oil, natural gas, 

steam coal, coking 
coal 

electricity, 
 light fuel oil 

electricity, 
light fuel oil, 
natural gas 

electricity, 
light fuel oil, 
steam coal 

electricity, light 
fuel oil, natural 
gas, steam coal 

electricity, light 
fuel oil, steam 

coal, coking coal 

electricity, light fuel 
oil, natural gas, 

steam coal, coking 
coal 

  (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) 

ln(L)ijt-1 -0.059 -0.069 -0.092 -0.116 -0.080 -0.104    -0.173 -0.192 -0.212 -0.251 -0.193 -0.232    

  (0.170) (0.157) (0.167) (0.147) (0.165) (0.146)    (0.208) (0.191) (0.200) (0.181) (0.199) (0.182)    

ln(Green_stock)ijt-1 0.437*** 0.448*** 0.429*** 0.439*** 0.431*** 0.441*** 0.277*** 0.292*** 0.270*** 0.281*** 0.274*** 0.284*** 

  (0.068) (0.070) (0.069) (0.070) (0.070) (0.070)    (0.087) (0.089) (0.089) (0.088) (0.090) (0.088)    

ln(Other_stock)ijt-1 0.170 0.182 0.170 0.194* 0.160 0.190    -0.118 -0.100 -0.119 -0.086 -0.131 -0.093    

  (0.116) (0.115) (0.108) (0.114) (0.111) (0.115)    (0.113) (0.111) (0.105) (0.107) (0.108) (0.109)    

ln(Moving_average_energy_price)ijt-1 0.716** 0.364** 0.984** 0.675** 0.944** 0.650**  1.014* 0.553* 1.251*** 0.929** 1.125** 0.871**  

  (0.350) (0.182) (0.376) (0.274) (0.384) (0.267)    (0.516) (0.284) (0.446) (0.379) (0.452) (0.363)    

Constant -4.066 -1.672 -5.054* -2.825 -4.868* -2.809    -6.891* -3.793 -7.902** -5.375* -7.184** -5.175*   

  (2.681) (2.143) (2.868) (2.325) (2.890) (2.304)    (3.720) (2.878) (3.143) (3.029) (3.141) (2.958)    

Country specific time fixed effects yes yes yes yes yes yes yes yes yes yes yes yes 

Country specific industry  
fixed effects 

yes yes yes yes yes yes yes yes yes yes yes yes 

N 1203 1203 1203 1203 1203 1203    1203 1203 1203 1203 1203 1203 

Groups 89 89 89 89 89 89 89 89 89 89 89 89 

R2 within 0.80 0.80 0.80 0.80 0.80 0.80    0.31 0.31 0.32 0.32 0.31 0.32 

 
Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the industry-country level (clustered sandwich estimator) are in brackets under the 
coefficients; ***, **, * denotes statistical significance at the 1%, 5% and 10% test level, respectively. 
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Table A.6: Estimates based on alternative depreciation rates and controlling for outliers, respectively 
Estimation method OLS log linear fixed-effects regression 

Period 1984-2009 

Dependent variable ln(Green_patents)ijt ln(Green_patents)ijt - ln(Other_patents)ijt ln(Green_patents)ijt ln(Green_patents)ijt - ln(Other_patents)ijt

Depreciation rate 10% 30% 10% 30% 15% 15% 15% 15% 

Checking for outliers no no no no drop top 1% drop top 5% drop top 1% drop top 5% 

  (1) (2) (3) (4) (5) (6) (7) (8) 

ln(L)ijt-1 0.101 0.089 -0.114    -0.103    0.097 0.091 -0.111 -0.118    

  (0.072) (0.062) (0.086)    (0.080)    (0.069) (0.068) (0.085) (0.084)    

ln(Green_stock)ijt-1 0.551*** 0.539*** 0.276*** 0.321*** 0.551*** 0.548*** 0.292*** 0.288*** 

  (0.044) (0.040) (0.052)    (0.047)    (0.043) (0.043) (0.051) (0.051)    

ln(Other_stock)ijt-1 0.161*** 0.177*** -0.293*** -0.299*** 0.163*** 0.157*** -0.297*** -0.301*** 

  (0.054) (0.041) (0.072)    (0.058)    (0.050) (0.048) (0.068) (0.067)    

ln(Moving_average_energy_price)ijt-1 0.356** 0.309** 0.491**  0.458**  0.352** 0.321** 0.486** 0.463**  

  (0.146) (0.127) (0.199)    (0.182)    (0.143) (0.139) (0.199) (0.195)    

Constant -4.103*** -3.302*** -3.122**  -3.176**  -3.862*** -3.558*** -3.047** -2.871**  

  (1.144) (0.960) (1.446)    (1.292)    (1.100) (1.057) (1.432) (1.400)    

Country specific time fixed effects yes yes yes yes yes yes yes yes 

Country specific industry  
fixed effects 

yes yes yes yes yes yes yes yes 

N 2669 2669 2669    2669    2629 2494 2629 2494    

Groups 144 144 144 144 142 134 142 134 

R2 within 0.76 0.77 0.44    0.45    0.76 0.74 0.44 0.44    

 
Notes: see Table 2 for the variable definitions; standard errors that are robust to heteroskedasticity and clustered at the industry-country 
level (clustered sandwich estimator) are in brackets under the coefficients; ***, **, * denotes statistical significance at the 1%, 5% and 
10% test level, respectively.



 

 

38

Table A.7: Models dealing with the count data characteristics of the green innovation 
variable and the endogeneity of the stock variables, respectively 

Estimation method Fixed-effects Poisson regression OLS pre-sample mean estimator

Period 1984-2009 

Dependent variable Green_patentsijt ln(Green_patents)ijt 

  (1) (2) 

ln(L)ijt-1 0.046    0.056*   

  (0.121)    0.056*   

ln(Green_stock)ijt-1 0.798*** (0.033)    

  (0.094)    (0.033)    

ln(Other_stock)ijt-1 0.035    0.085**  

  (0.119)    (0.036)    

ln(Moving_average_energy_price)ijt-1 0.202**  0.148**  

  (0.096)    (0.069)    

Constant   -2.216*** 

    (0.715)    

Year fixed effects yes no 

Country specific industry  
fixed effects 

yes no 

Country specific time fixed effects no yes 

Country fixed effects no no 

Industry fixed effects no yes 

Pre-sample fixed effects no yes 

N 2610 2669    

Groups 137 144 

Wald chi2 72782.29***   

R2   0.94    

Log Likelihood -7674.11   

 
Notes: see Table 2 for the variable definitions; standard errors that are in brackets 
under the coefficients; ***, **, * denotes statistical significance at the 1%, 5% and 
10% test level, respectively; Column (1): In line with Allison and Waterman (2002) 
we used robust standard errors to correct for overdispersion; Column (2): Pre-
sample mean scaling approach proposed by Blundell et al. (1995) was used to 
account for fixed unobserved heterogeneity in the propensity to patent in the 
presence of lagged endogenous variables; standard errors are robust to 
heteroskedasticity and clustered at the industry-country level (clustered sandwich 
estimator). 


